
Advanced European Infrastructures for Detectors at Accelerators

DDG4

A Simulation Toolkit for

High Energy Physics Experiments

using Geant4 and the

DD4hep Geometry Description

M. Frank

CERN, 1211 Geneva 23, Switzerland

Advanced European Infrastructures for Detectors at Accelerators

Abstract

Simulating the detector response is an essential tool in high energy physics to analyze the
sensitivity of an experiment to the underlying physics. Such simulation tools require a
detailed though convenient detector description as it is provided by the DD4hep toolkit.
We will present the generic simulation toolkit DDG4 using the DD4hep detector description
toolkit. The toolkit implements a modular and flexible approach to simulation activities
using Geant4. User defined simulation applications using DDG4 can easily be configured,
extended using specialized action routines. The design is strongly driven by easy of use;
developers of detector descriptions and applications using them should provide minimal
information and minimal specific code to achieve the desired result.

Document History

Document
version Date Author

1.0 19/11/2013 Markus Frank CERN/LHCb

DDG4 User Manual I

Advanced European Infrastructures for Detectors at Accelerators

Contents

1 Introduction 1

2 The Geant4 User Interface 1

3 DDG4 Implementation 2
3.1 The Application Core Object: Geant4Kernel . 2
3.2 Action Sequences . 3
3.3 The Base Class of DDG4 Actions: Geant4Action . 3

3.3.1 The Properties of Geant4Action Instances . 4
3.4 Geant4 Action Sequences . 4
3.5 Sensitive Detectors . 7

3.5.1 Helpers of Sensitive Detectors: The Geant4VolumeManager 8
3.5.2 DDG4 Intrinsic Sensitive Detectors . 9
3.5.3 Sensitive Detector Filters . 9

3.6 The Geant4 Physics List . 11
3.7 The Support of the Geant4 UI: Geant4UIMessenger . 12

4 Setting up DDG4 14
4.1 Setting up DDG4 using XML . 14

4.1.1 Setup of the Physics List . 14
4.1.2 Setup of Global Geant4 Actions . 15
4.1.3 Setup of Geant4 Filters . 16
4.1.4 Geant4 Action Sequences . 16
4.1.5 Setup of Geant4 Sensitive Detectors . 17
4.1.6 Miscellaneous Setup of Geant4 Objects . 18
4.1.7 Setup of Geant4 Phases . 18

4.2 Setting up DDG4 using ROOT-CINT . 19
4.3 Setting up DDG4 using Python . 21
4.4 A Simple Example . 25

5 Higher Level Components 26
5.1 Input Data Handling . 27
5.2 Anatomy of the Input Action . 28
5.3 Monte-Carlo Truth Handling . 28

6 Output Data Handling 30

7 Multi-Threading in DDG4 31
7.1 Introductory Remarks . 31
7.2 Thread related contexts . 32
7.3 Thread-Shared Components . 32
7.4 Backwards- and Single-Thread-Compatibility . 33
7.5 Support for Python Setup in Multi-Threading Mode . 33
7.6 DDG4 Multi-Threading Example . 34

8 Existing DDG4 components 37
8.1 Generic Action Modules . 38

8.1.1 Geant4UIManager . 38
8.1.2 Geant4Random . 38

8.2 Geant4UserInitialization Implementations . 39
8.2.1 Geant4PythonInitialization . 39
8.2.2 Geant4PythonDetectorConstruction . 39

DDG4 User Manual II

Advanced European Infrastructures for Detectors at Accelerators

8.3 Predefined Geant4 Physics List Objects . 39
8.4 Geant4 Generation Action Modules . 40

8.4.1 Base class: Geant4GeneratorAction . 40
8.4.2 Geant4GeneratorActionSequence . 40
8.4.3 Geant4GeneratorActionInit . 40
8.4.4 Geant4InteractionVertexBoost . 41
8.4.5 Geant4InteractionVertexSmear . 41
8.4.6 Geant4InteractionMerger . 41
8.4.7 Geant4PrimaryHandler . 41
8.4.8 Geant4ParticleGun . 42
8.4.9 Geant4ParticleHandler . 42

8.5 Geant4 Event Action Modules . 44
8.5.1 Base class: Geant4EventAction . 44
8.5.2 Geant4EventActionSequence . 44
8.5.3 Geant4ParticlePrint . 44

8.6 Sensitive Detectors . 45
8.6.1 Geant4TrackerAction . 45
8.6.2 Geant4CalorimeterAction . 45

8.7 I/O Components . 46
8.7.1 ROOT Output ”Simple” . 46
8.7.2 LCIO Output ”Simple” . 46

DDG4 User Manual III

Advanced European Infrastructures for Detectors at Accelerators

1 Introduction

This manual should introduce to the DDG4 framework. One goal of DDG4 is to easily configure the
simulation applications capable of simulating the physics response of detector configurations as they are
used for example in high energy physics experiments. In such simulation programs the user normally
has to define the experimental setup in terms of its geometry and in terms of its active elements which
sample the detector response.
The goal of DDG4 is to generalize the configuration of a simulation application to a degree, which
does not force users to write code to test a detector design. At the same time it should of course be
feasible to supply specialized user written modules which are supposed to seamlessly operate together
with standard modules supplied by the toolkit. Detector-simulation depends strongly on the use of
an underlying simulation toolkit, the most prominent candidate nowadays being Geant4 [8]. DD4hep

supports simulation activities with Geant4 providing an automatic translation mechanism between
geometry representations. The simulation response in the active elements of the detector is strongly
influenced by the technical choices and precise simulations depends on the very specific detection
techniques.
Similar to the aim of DD4hep [1], where with time a standard palette of detector components developed
by users should become part of the toolkit, DDG4 also hopes to provide a standard palette of compo-
nents used to support simulation activities for detector layouts where detector designers may base the
simulation of a planned experiment on these predefined components for initial design and optimization
studies. The longterm vision is to construct simulation applications writing only new components not
yet present i.e. the main work will be to select the appropriate components from the palette and
connect them to a functional program.
This is not a manual to Geant4 nor the basic infrastructure of DD4hep . It is assumed that this
knowledge is present and the typical glossary is known.

2 The Geant4 User Interface

The Geant4 simulation toolkit [8] implements a very complex machinery to simulate the energy depo-
sition of particles traversing materials. To ease its usage for the clients and to shield clients from the
complex internals when actually implementing a simulation applications for a given detector design, it
provides several user hooks as shown in Figure 1. Each of these hooks serves a well specialized purpose,
but unfortunately also leads to very specialized applications. One aim of DDG4 is to formalize these
user actions so that the invocation at the appropriate time may be purely data driven.
In detail the following object-hooks allow the client to define user provided actions:

• The User Physics List allows the client to customize and define the underlying physics pro-
cess(es) which define the particle interactions inside the detector defined with the geometry
description. These interactions define the detector response in terms of energy depositions.

• The Run Action is called once at the start and end of a run. i.e. a series of generated events.
These two callbacks allow clients to define run-dependent actions such as statistics summaries
etc.

• The Primary Generator Action is called for every event. During the callback all particles are
created which form the microscopic kinematic action of the particle collision. This input may
either origin directly from an event generator program or come from file.

• The Event Action is called once at the start and the end of each event. It is typically used for a
simple analysis of the processed event. If the simulated data should be written to some persistent
medium, the call at the end of the event processing is the appropriate place.

• The Tracking Action

• The Stepping Action

• The Stacking Action

Geant4 provides all callbacks with the necessary information in the form of appropriate arguments.

DDG4 User Manual 1

Advanced European Infrastructures for Detectors at Accelerators

Figure 1: The various user hooks provided by Geant4. Not shown here is the callback system interfacing
to the active elements of the detector design.

Besides the callback system, Geant4 provides callbacks whenever a particle traverses a sensitive volume.
These callbacks are called - similar to event actions - once at the start and the end of the event, but
in addition, if either the energy deposit of a particle in the sensitive volume exceeds some threshold.
The callbacks are formalized within the base class G4VSensitiveDetector.

3 DDG4 Implementation

A basic design criteria of the a DDG4 simulation application was to process any user defined hook
provided by Geant4 as a series of algorithmic procedures, which could be implemented either using
inheritance or by a callback mechanism registering functions fulfilling a given signature. Such sequences
are provided for all actions mentioned in the list in Section 2 as well as for the callbacks to sensitive
detectors.
The callback mechanism was introduced to allow for weak coupling between the various actions. For
example could an action performing monitoring using histograms at the event level initialize or reset
its histograms at the start/end of each run. To do so, clearly a callback at the start/end of a run would
be necessary.
In the following sections a flexible and extensible interface to hooks of Geant4 is discussed starting with
the description of the basic components Geant4Kernel and Geant4Action followed by the implementation
of the relevant specializations. The specializations exposed are sequences of such actions, which also
call registered objects. In later section the configuration and the combination of these components
forming a functional simulation application is presented.

3.1 The Application Core Object: Geant4Kernel

The kernel object is the central context of a DDG4 simulation application and gives all clients access
to the user hooks (see Figure 2). All Geant4 callback structures are exposed so that clients can easily
objects implementing the required interface or register callbacks with the correct signature. Each of
these action sequences is connected to an instance of a Geant4 provided callback structure as it is
shown in Figure 1.

DDG4 User Manual 2

Advanced European Infrastructures for Detectors at Accelerators

Figure 2: The main application object gives access to all sequencing actions in a DDG4 4 application.
Sequence actions are only container of user actions calling one user action after the other. Optionally
single callbacks may be registered to a user action.

3.2 Action Sequences

As shown in

3.3 The Base Class of DDG4 Actions: Geant4Action

The class Geant4Action is a common component interface providing the basic interface to the framework
to

• configure the component using a property mechanism

• provide an appropriate interface to Geant4 interactivity. The interactivity included a generic
way to change and access properties from the Geant4 UI prompt as well as executing registered
commands.

• As shown in Figure 3, the base class also provides to its sub-class a reference to the Geant4Kernel

objects through the Geant4Context.

The Geant4Action is a named entity and can be uniquely identified within a sequence attached to one
Geant4 user callback.

Figure 3: The design of the common base class Geant4Action.

DDG4 knows two types of actions: global actions and anonymous actions. Global actions are accessible
externally from the Geant4Kernel instance. Global actions are also re-usable and hence may be con-
tribute to several action sequences (see the following chapters for details). Global actions are uniquely

DDG4 User Manual 3

Advanced European Infrastructures for Detectors at Accelerators

identified by their name. Anonymous actions are known only within one sequence and normally are
not shared between sequences.

3.3.1 The Properties of Geant4Action Instances

Nearly any subclass of a Geant4Action needs a flexible configuration in order to be reused, modified
etc. The implementation of the mechanism uses a very flexible value conversion mechanism using
boost::spirit, which support also conversions between unrelated types provided a dictionary is present.
Properties are supposed to be member variables of a given action object. To publish a property it
needs to be declared in the constructor as shown here:

declareProperty("OutputLevel", m_outputLevel = INFO);

declareProperty("Control", m_needsControl = false);

The internal setup of the Geant4Action objects then ensure that all declared properties will be set after
the object construction to the values set in the setup file.
Note: Because the values can only be set after the object was constructed, the actual values may not
be used in the constructor of any base or sub-class.

3.4 Geant4 Action Sequences

All Geant4 user hooks are realized as action sequences. As shown in Figure 2 these sequences are
accessible to the user, who may attach specialized actions to the different action sequences. This allows a
flexible handing of specialized user actions e.g. to dynamically add monitoring actions filling histograms
or to implement alternative hit creation mechanism in a sensitive detector for detailed detector studies.
Figure 4 shows the schematic call structure of an example Geant4TrackingActionSequence:

Figure 4: The design of the tracking action sequence. Specialized tracking action objects inherit from
the Geant4TrackingAction object and must be attached to the sequence.

Geant4 calls the function from the virtual interface (G4UserTrackingAction), which is realised by the
Geant4UserTrackingAction with the single purpose to propagate the call to the action sequence, which
then calls all registered clients of type Geant4TrackingAction.
The main action sequences have a fixed name. These are

• The RunAction attached to the G4UserRunAction, implemented by the Geant4RunActionSequence

class and is called at the start and the end of every run (beamOn). Members of the Geant4RunActionSequence

are of type Geant4RunAction and receive the callbacks by overloading the two routines:

DDG4 User Manual 4

Advanced European Infrastructures for Detectors at Accelerators

/// begin-of-run callback

virtual void begin(const G4Run* run);

/// End-of-run callback

virtual void end(const G4Run* run);

or register a callback with the signature void (T::*)(const G4Run*) either to receive begin-of-run
or end-or-calls using the methods:

/// Register begin-of-run callback. Types Q and T must be polymorph!

template <typename Q, typename T> void callAtBegin(Q* p, void (T::*f)(const G4Run*));

/// Register end-of-run callback. Types Q and T must be polymorph!

template <typename Q, typename T> void callAtEnd(Q* p, void (T::*f)(const G4Run*));

of the Geant4RunActionSequence from the Geant4Context object.

• The EventAction attached to the G4UserEventAction, implemented by the EventActionSequence

class and is called at the start and the end of every event. Members of the Geant4EventActionSequence

are of type Geant4EventAction and receive the callbacks by overloading the two routines:

/// Begin-of-event callback

virtual void begin(const G4Event* event);

/// End-of-event callback

virtual void end(const G4Event* event);

or register a callback with the signature void (T::*)(const G4Event*) either to receive begin-of-
run or end-or-calls using the methods:

/// Register begin-of-event callback

template <typename Q, typename T> void callAtBegin(Q* p, void (T::*f)(const G4Event*));

/// Register end-of-event callback

template <typename Q, typename T> void callAtEnd(Q* p, void (T::*f)(const G4Event*));

of the Geant4EventActionSequence from the Geant4Context object.

• The GeneratorAction attached to the G4VUserPrimaryGeneratorAction, implemented by the
Geant4GeneratorActionSequence class and is called at the start of every event and provided all
initial tracks from the Monte-Carlo generator. Members of the Geant4GeneratorActionSequence

are of type Geant4EventAction and receive the callbacks by overloading the member function:

/// Callback to generate primary particles

virtual void operator()(G4Event* event);

or register a callback with the signature void (T::*)(G4Event*) to receive calls using the method:

/// Register primary particle generation callback.

template <typename Q, typename T> void call(Q* p, void (T::*f)(G4Event*));

of the Geant4GeneratorActionSequence from the Geant4Context object.

• The TrackingAction attached to the G4UserTrackingAction, implemented by the Geant4- Tracking-

ActionSequence class and is called at the start and the end of tracking one single particle trace
through the material of the detector. Members of the Geant4TrackingActionSequence are of type
Geant4TrackingAction and receive the callbacks by overloading the member function:

/// Pre-tracking action callback

virtual void begin(const G4Track* trk);

/// Post-tracking action callback

virtual void end(const G4Track* trk);

DDG4 User Manual 5

Advanced European Infrastructures for Detectors at Accelerators

Figure 5: The design of the tracking action sequence. Specialized tracking action objects inherit from
the Geant4TrackingAction object and must be attached to the sequence.

or register a callback with the signature void (T::*)(const G4Step*, G4SteppingManager*) to
receive calls using the method:

/// Register Pre-track action callback

template <typename Q, typename T> void callAtBegin(Q* p, void (T::*f)(const G4Track*));

/// Register Post-track action callback

template <typename Q, typename T> void callAtEnd(Q* p, void (T::*f)(const G4Track*));

Figure 5 show as an example the design (class-diagram) of the Geant4TrackingAction.

• The SteppingAction attached to the G4UserSteppingAction, implemented by the Geant4- SteppingActionSequence

class and is called for each step when tracking a particle. Members of the Geant4SteppingActionSequence

are of type Geant4SteppingAction and receive the callbacks by overloading the member function:

/// User stepping callback

virtual void operator()(const G4Step* step, G4SteppingManager* mgr);

or register a callback with the signature void (T::*)(const G4Step*, G4SteppingManager*) to
receive calls using the method:

/// Register stepping action callback.

template <typename Q, typename T> void call(Q* p, void (T::*f)(const G4Step*,

G4SteppingManager*));

• The StackingAction attached to the G4UserStackingAction, implemented by the Geant4-

StackingActionSequence class. Members of the Geant4StackingActionSequence are of type
Geant4StackingAction and receive the callbacks by overloading the member functions:

DDG4 User Manual 6

http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_stacking_action.html

Advanced European Infrastructures for Detectors at Accelerators

/// New-stage callback

virtual void newStage();

/// Preparation callback

virtual void prepare();

or register a callback with the signature void (T::*)() to receive calls using the method:

/// Register begin-of-event callback. Types Q and T must be polymorph!

template <typename T> void callAtNewStage(T* p, void (T::*f)());

/// Register end-of-event callback. Types Q and T must be polymorph!

template <typename T> void callAtPrepare(T* p, void (T::*f)());

All sequence types support the method void adopt(T* member reference) to add the members. Once
adopted, the sequence takes ownership and manages the member. The design of all sequences is very
similar.

3.5 Sensitive Detectors

Sensitive detectors are associated by the detector designers to all active materials, which would pro-
duce a signal which can be read out. In Geant4 this concept is realized by using a base class
G4VSensitiveDetector. The mandate of a sensitive detector is the construction of hit objects using
information from steps along a particle track. The G4VSensitiveDetector receives a callback at the
begin and the end of the event processing and at each step inside the active material whenever an
energy deposition occurred.
The sensitive actions do not necessarily deal only the collection of energy deposits, but could also be
used to simply monitor the performance of the active element e.g. by producing histograms of the
absolute value or the spacial distribution of the depositions.
Within DDG4 the concept of sensitive detectors is implemented as a configurable action sequence of type
Geant4SensDetActionSequence calling members of the type Geant4Sensitive as shown in Figure 6.
The actual processing part of such a sensitive action is only called if the and of a set of required filters
of type Geant4Filter is positive (see also section 3.5.3). No filter is also positive. Possible filters are
e.g. particle filters, which ignore the sensitive detector action if the particle is a geantino or if the
energy deposit is below a given threshold.
Objects of type Geant4Sensitive receive the callbacks by overloading the member function:

/// Method invoked at the beginning of each event.

virtual void begin(G4HCofThisEvent* hce);

/// Method invoked at the end of each event.

virtual void end(G4HCofThisEvent* hce);

/// Method for generating hit(s) using the information of G4Step object.

virtual bool process(G4Step* step, G4TouchableHistory* history);

/// Method invoked if the event was aborted.

virtual void clear(G4HCofThisEvent* hce);

or register a callback with the signature void (T::*)(G4HCofThisEvent*) respectively void (T::*)(G4Step*,

G4TouchableHistory*) to receive callbacks using the methods:

/// Register begin-of-event callback

template <typename T> void callAtBegin(T* p, void (T::*f)(G4HCofThisEvent*));

/// Register end-of-event callback

template <typename T> void callAtEnd(T* p, void (T::*f)(G4HCofThisEvent*));

/// Register process-hit callback

template <typename T> void callAtProcess(T* p, void (T::*f)(G4Step*, G4TouchableHistory*));

/// Register clear callback

template <typename T> void callAtClear(T* p, void (T::*f)(G4HCofThisEvent*));

Please refer to the Geant4 Applications manual from the Geant4 web page for further details about
the concept of sensitive detectors.

DDG4 User Manual 7

http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_sens_det_action_sequence.html
http://www.cern.ch/frankm/DD4hep/html/struct_d_d4hep_1_1_simulation_1_1_geant4_sensitive.html

Advanced European Infrastructures for Detectors at Accelerators

Figure 6: The sensitive detector design. The actual energy deposits are collected in user defined
subclasses of the Geant4Sensitive. Here, as an example possible actions called TrackerHitCollector,
TrackerDetailedHitCollector and TrackerHitMonitor are shown.

3.5.1 Helpers of Sensitive Detectors: The Geant4VolumeManager

Sooner or later, when a hit is created in a sensitive placed volume, the hit must be associated with this
volume. For this purpose DD4hep provides the concept of the VolumeManager, which identifies placed
volumes uniquely by a 64-bit identifier, the CellID. This mechanism allows to quickly retrieve a given
volume given the hit data containing the CellID. The CellID is a very compressed representation for
any element in the hierarchy of placed volumes to the sensitive volume in question.
During the simulation the reverse mechanism must be applied: Geant4 provides the hierarchy of
G4PhysicalVolumes to the hit location and the local coordinates of the hit within the sensitive volume.
Hence to determine the volume identifier is essential to store hits so that they can be later accessed
and processed efficiently. This mechanism is provided by the Geant4VolumeManager. Clients typically
do not interact with this object, any access necessary is provided by the Geant4Sensitive action:

/// Method for generating hit(s) using the information of G4Step object.

bool MySensitiveAction:process(G4Step* step,G4TouchableHistory* /*hist*/) {

...

Hit* hit = new Hit();

// *** Retrieve the cellID ***

hit->cellID = cellID(step);

...

}

The call is realized using a member function provided by the Geant4Sensitive action:

DDG4 User Manual 8

Advanced European Infrastructures for Detectors at Accelerators

/// Returns the cellID of the sensitive volume corresponding to the step

/** The CellID is the VolumeID + the local coordinates of the sensitive area.

* Calculated by combining the VolIDS of the complete geometry path (Geant4TouchableHistory)

* from the current sensitive volume to the world volume

*/

long long int cellID(G4Step* step);

Note:
The Geant4VolumeManager functionality is not for free! It requires that
– match Geant4 volume with TGeo volume

3.5.2 DDG4 Intrinsic Sensitive Detectors

Currently there are two generic sensitive detectors implemented in DDG4:

• The Geant4TrackerAction, which may be used to handle tracking devices. This sensitive detector
produces one hit for every energy deposition of Geant4 i.e. for every callback to

/// Method for generating hit(s) using the information of G4Step object.

virtual bool process(G4Step* step, G4TouchableHistory* history);

See the implementation file DDG4/plugins/Geant4SDAction.cpp for details. The produced hits
are of type Geant4Tracker::Hit .

• The Geant4CalorimeterAction, which may be used to handle generic calorimeter like devices.
This sensitive detector produces at most one hit for every cell in the calorimeter. If several
tracks contribute to the energy deposit of this cell, the contributions are added up. See the
implementation file DDG4/plugins/Geant4SDAction.cpp for details. The produced hits are of
type Geant4Calorimeter::Hit . propagate the MC truth information with respect to each track
kept in the particle record.

Both sensitive detectors use the Geant4VolumeManager discussed in section 3.5.1 to identify the sensitive
elements.
PLEASE NOTE:
The above palette of generic sensitive detectors only contains two very often used implementations. We
hope, that this palette over time grows from external contributions of other generic sensitive detectors.
We would be happy to extend this palette with other generic implementations. One example would be
the handling of the simulation response for optical detectors like RICH-Cerenkov detectors.

3.5.3 Sensitive Detector Filters

The concept of filters allows to build more flexible sensitive detectors by restricting the hit processing
of a given instance of a sensitive action.

• Examples would be to demand a given particle type before a sensitive action is invoked: a sensitive
action dealing with optical photons (RICH detectors, etc), would e.g. not be interested in energy
depositions of other particles. A filter object restricting the particle type to optical photons would
be appropriate.

• Another example would be to implement a special action instance, which would be only called if
the filter requires a minimum energy deposit.

There are plenty of possible applications, hence we would like to introduce this feature here.
Filters are called by Geant4 before the hit processing in the sensitive detectors start. The global filters
may be shared between many sensitive detectors. Alternatively filters may be directly attached to the
sensitive detector in question. Attributes are directly passed as properties to the filter action.
Technically do Geant4Filter objects inherit from the base class Geant4Filter (see Figure 7. Any filter
inherits from the common base class Geant4Filter, then several specializations may be configured like
filters to select/reject particles, to specify the minimal energy deposit to be processed etc. A sensitive
detector is called if the filter callback with the signature returns a true result:

DDG4 User Manual 9

http://www.cern.ch/frankm/DD4hep/html/_geant4_s_d_actions_8cpp_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_data_8h_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_s_d_actions_8cpp_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_data_8h_source.html

Advanced European Infrastructures for Detectors at Accelerators

/// Filter action. Return true if hits should be processed

virtual bool operator()(const G4Step* step) const;

Figure 7: The sensitive detector filters design. The shown class diagram is actually implemented.

DDG4 User Manual 10

Advanced European Infrastructures for Detectors at Accelerators

3.6 The Geant4 Physics List

Geant4 provides the base class G4VUserPhysicsList, which allows users to implement customized physics
according to the studies to be made. Any user defined physics list must provide this interface. DDG4
provides such an interface through the ROOT plugin mechanism using the class G4VModularPhysicsList.
The flexibility of DDG4 allows for several possibilities to setup the Geant4 physics list. Instead of
explicitly coding the physics list, DDG4 foresees the usage of the plugin mechanism to instantiate the
necessary calls to Geant4 in a sequence of actions:

• The physics list is realized as a sequence of actions of type Geant4PhysicsListActionSequence .
Members of the Geant4PhysicsListActionSequence are of type Geant4PhysicsList and receive
the callbacks by overloading the member functions:

/// Callback to construct the physics constructors

virtual void constructProcess(Geant4UserPhysics* interface);

/// constructParticle callback

virtual void constructParticles(Geant4UserPhysics* particle);

/// constructPhysics callback

virtual void constructPhysics(Geant4UserPhysics* physics);

or register a callback with the signature void (T::*)(Geant4UserPhysics*) to receive calls using
the method:

/// Register process construction callback t

template <typename Q, typename T> void constructProcess(Q* p, void (T::*f)(Geant4UserPhysics*));

/// Register particle construction callback

template <typename Q, typename T> void constructParticle(Q* p, void (T::*f)(Geant4UserPhysics*));

The argument of type Geant4UserPhysics provides a basic interface to the original G4VModular-
PhysicsList, which allows to register physics constructors etc.

• In most of the cases the above approach is an overkill and often even too flexible. Hence,
alternatively, the physics list may consist of a single entry of type Geant4PhysicsList .

The basic implementation of the Geant4PhysicsList supports the usage of various

• particle constructors , such as single particle constructors like G4Gamma or G4Proton, or whole
particle groups like G4BosonConstructor or G4IonConstrutor,

• physics process constructors , such as e.g. G4GammaConversion, G4PhotoElectricEffect or
G4ComptonScattering,

• physics constructors combining particles and the corresponding interactions, such as
e.g. G4OpticalPhysics, HadronPhysicsLHEP or G4HadronElasticPhysics and

• predefined Geant4 physics lists , such as FTFP BERT, CHIPS or QGSP INCLXX. This option is triggered
by the content of the string property ”extends” of the Geant4Kernel::physicsList() action.

These constructors are internally connected to the above callbacks to register themselves. The con-
structors are instantiated using the ROOT plugin mechanism.
The description of the above interface is only for completeness. The basic idea is, that the physics list
with its particle and physics constructors is configured entirely data driven using the setup mechanism
described in the following chapter. However, DDG4 is not limited to the data driven approach. Spe-
cialized physics lists may be supplied, but there should be no need. New physics lists could always
be composed by actually providing new physics constructors and actually publishing these using the
factory methods:

// Framework include files1
#include "DDG4/Factories.h"2

3
#include "My_Very_Own_Physics_Constructor.h"4
DECLARE_GEANT4_PHYSICS(My_Very_Own_Physics_Constructor)5

where My Very Own Physics Constructor represents a sub-class of G4VPhysicsConstructor.

DDG4 User Manual 11

http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_physics_list_action_sequence.html
http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_physics_list_action_sequence.html
http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_physics_list.html
http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_user_physics.html
http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_physics_list.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_particles_8cpp_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_processes_8cpp_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_physics_constructors_8cpp_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_particles_8cpp_source.html

Advanced European Infrastructures for Detectors at Accelerators

3.7 The Support of the Geant4 UI: Geant4UIMessenger

The support of interactivity in Geant4 is mandatory to debug detector setups in small steps. The
Geant4 toolkit did provide for this reason a machinery of UI commands.

Figure 8: The design of the Geant4UIMessenger class responsible for the interaction between the user
and the components of DDG4 and Geant4.

The UI control is enabled, as soon as the property ”Control” (boolean) is set to true. Be default all
properties of the action are exported. Similar to the callback mechanism described above it is also
feasible to register any object callback invoking a method of a Geant4Action-subclass.
The following (shortened) screen dump illustrates the usage of the generic interface any Geant4Action
offers:

Idle> ls

Command directory path : /

Sub-directories :

/control/ UI control commands.

/units/ Available units.

/process/ Process Table control commands.

/ddg4/ Control for all named Geant4 actions

...

Idle> cd /ddg4

Idle> ls

...

Control for all named Geant4 actions

Sub-directories :

/ddg4/RunInit/ Control hierarchy for Geant4 action:RunInit

/ddg4/RunAction/ Control hierarchy for Geant4 action:RunAction

/ddg4/EventAction/ Control hierarchy for Geant4 action:EventAction

/ddg4/GeneratorAction/ Control hierarchy for Geant4 action:GeneratorAction

/ddg4/LCIO1/ Control hierarchy for Geant4 action:LCIO1

/ddg4/Smear1/ Control hierarchy for Geant4 action:Smear1

/ddg4/PrimaryHandler/ Control hierarchy for Geant4 action:PrimaryHandler

/ddg4/TrackingAction/ Control hierarchy for Geant4 action:TrackingAction

/ddg4/SteppingAction/ Control hierarchy for Geant4 action:SteppingAction

/ddg4/ParticleHandler/ Control hierarchy for Geant4 action:ParticleHandler

DDG4 User Manual 12

Advanced European Infrastructures for Detectors at Accelerators

/ddg4/UserParticleHandler/ Control hierarchy for Geant4 action:UserParticleHandler

...

Idle> ls Smear1

Command directory path : /ddg4/Smear1/

...

Commands :

show * Show all properties of Geant4 component:Smear1

Control * Property item of type bool

Mask * Property item of type int

Name * Property item of type std::string

Offset * Property item of type ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >

OutputLevel * Property item of type int

Sigma * Property item of type ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >

name * Property item of type std::string

Idle> Smear1/show

PropertyManager: Property Control = True

PropertyManager: Property Mask = 1

PropertyManager: Property Name = ’Smear1’

PropertyManager: Property Offset = (-20 , -10 , -10 , 0)

PropertyManager: Property OutputLevel = 4

PropertyManager: Property Sigma = (12 , 8 , 8 , 0)

PropertyManager: Property name = ’Smear1’

Idle> Smear1/Offset (200*mm, -3*mm, 15*mm, 10*ns)

Geant4UIMessenger: +++ Smear1> Setting property value Offset = (200*mm, -3*mm, 15*mm, 10*ns)

native:(200 , -3 , 15 , 10).

Idle> Smear1/show

...

PropertyManager: Property Offset = (200 , -3 , 15 , 10)

DDG4 User Manual 13

Advanced European Infrastructures for Detectors at Accelerators

4 Setting up DDG4

DDG4 offers several possibilities to configure a simulation application using

• XML files,

• by coding a setup script loaded from the ROOT interpreter with the AClick mechanism.

• by creating a setup script using python and ROOT’s reflection mechanism exposed by PyROOT.

The following subsection describe these different mechanism. An attempt was made to match the
naming conventions of all approaches where possible.

4.1 Setting up DDG4 using XML

A special plugin was developed to enable the configuration of DDG4 using XML structures. These files
are parsed identically to the geometry setup in DD4hep the only difference is the name of the root-
element, which for DDG4 is <geant4 setup>. The following code snippet shows the basic structure of a
DDG4 setup file:

<geant4_setup>

<physicslist> ,,, </physicslist> <!-- Definition of the physics list -->

<actions> ... </actions> <!-- The list of global actions -->

<phases> ... </phases> <!-- The definition of the various phases -->

<filters> ... </filters> <!-- The list of global filter actions -->

<sequences> ... </sequences> <!-- The list of defined sequences -->

<sensitive_detectors> ... </sensitive_detectors> <!-- The list of sensitive detectors -->

<properties> ... </properties> <!-- Free format option sequences -->

</geant4_setup>

To setup a DDG4 4 application any number of xml setup files may be interpreted iteratively. In the
following subsections the content of these first level sub-trees will be discussed.

4.1.1 Setup of the Physics List

The main tag to setup a physics list is <physicslist> with the name attribute defining the instance of
the Geant4PhysicsList object. An example code snippet is shown below in Figure 9.

<geant4_setup>1
<physicslist name="Geant4PhysicsList/MyPhysics.0">2

3
<extends name="QGSP_BERT"/> <!-- Geant4 basic Physics list -->4

5
<particles> <!-- Particle constructors -->6
<construct name="G4Geantino"/>7
<construct name="G4ChargedGeantino"/>8
<construct name="G4Electron"/>9
<construct name="G4Gamma"/>10
<construct name="G4BosonConstructor"/>11
<construct name="G4LeptonConstructor"/>12
<construct name="G4MesonConstructor"/>13
<construct name="G4BaryonConstructor"/>14
...15

</particles>16
17

<processes> <!-- Process constructors -->18
<particle name="e[+-]" cut="1*mm">19

<process name="G4eMultipleScattering" ordAtRestDoIt="-1" ordAlongSteptDoIt="1"20
ordPostStepDoIt="1"/>21

<process name="G4eIonisation" ordAtRestDoIt="-1" ordAlongSteptDoIt="2"22

DDG4 User Manual 14

Advanced European Infrastructures for Detectors at Accelerators

ordPostStepDoIt="2"/>23
</particle>24
<particle name="mu[+-]">25
<process name="G4MuMultipleScattering" ordAtRestDoIt="-1" ordAlongSteptDoIt="1"26

ordPostStepDoIt="1"/>27
<process name="G4MuIonisation" ordAtRestDoIt="-1" ordAlongSteptDoIt="2"28

ordPostStepDoIt="2"/>29
</particle>30
...31

</processes>32
33

<physics> <!-- Physics constructors -->34
<construct name="G4EmStandardPhysics"/>35
<construct name="HadronPhysicsQGSP"/>36
...37

</physics>38
39

</physicslist>40
</geant4_setup>41

Figure 9: XML snippet showing the configuration of a physics list.

• To base all these constructs on an already existing predefined Geant4 physics list use the <extends>

tag with the attribute containing the name of the physics list as shown in line 4.

• To trigger a call to a particle constructors (line 7-14), use the <particles> section and define
the Geant4 particle constructor to be called by name. To trigger a call to

• physics process constructors, as shown in line 19-30, Define for each particle matching the
name pattern (regular expression!) and the default cut value for the corresponding processes.
The attributes ordXXXX correspond to the arguments of the Geant4 call
G4ProcessManager::AddProcess(process,ordAtRestDoIt, ordAlongSteptDoIt,ordPostStepDoIt); The
processes themself are created using the ROOT plugin mechanism. To trigger a call to

• physics constructors, as shown in line 34-35, use the <physics> section.

If only a predefined physics list is used, which probably already satisfies very many use cases, all these
section collapse to:

<geant4_setup>1
<physicslist name="Geant4PhysicsList/MyPhysics.0">2

<extends name="QGSP_BERT"/> <!-- Geant4 basic Physics list -->3
</physicslist>4

</geant4_setup>5

4.1.2 Setup of Global Geant4 Actions

Global actions must be defined in the <actions> section as shown in the following snippet:

<geant4_setup>1
<actions>2

<action name="Geant4TestRunAction/RunInit">3
<properties Property_int="12345"4

Property_double="-5e15"5
Property_string="Startrun: Hello_2"/>6

</action>7

DDG4 User Manual 15

Advanced European Infrastructures for Detectors at Accelerators

<action name="Geant4TestEventAction/UserEvent_2"8
Property_int="1234"9
Property_double="5e15"10
Property_string="Hello_2" />11

</actions>12
</geant4_setup>13

The default properties of every Geant4Action object are:

Name [string] Action name

OutputLevel [int] Flag to customize the level of printout

Control [boolean] Flag if the UI messenger should be installed.

The name attribute of an action child is a qualified name: The first part denotes the type of the plugin
(i.e. its class), the second part the name of the instance. Within one collection the instance name must
be unique. Properties of Geant4Actions are set by placing them as attributes into the <properties>

section.

4.1.3 Setup of Geant4 Filters

Filters are special actions called by Geant4Sensitives. Filters may be global or anonymous i.e. reusable
by several sensitive detector sequences as illustrated in Section 4.1.4. The setup is analogous to the
setup of global actions:

<filters>1
<filter name="GeantinoRejectFilter/GeantinoRejector"/>2
<filter name="ParticleRejectFilter/OpticalPhotonRejector">3
<properties particle="opticalphoton"/>4

</filter>5
<filter name="ParticleSelectFilter/OpticalPhotonSelector">6
<properties particle="opticalphoton"/>7

</filter>8
<filter name="EnergyDepositMinimumCut">9
<properties Cut="10*MeV"/>10

</filter>11
<!-- ... next global filter ... -->12

</filters>13

Global filters are accessible from the Geant4Kernel object.

4.1.4 Geant4 Action Sequences

Geant4 Action Sequences by definition are Geant4Action objects. Hence, they share the setup mecha-
nism with properties etc. For the setup mechanism two different types of sequences are known to DDG4

: Action sequences and Sensitive detector sequences. Bot are declared in the sequences section:

<geant4_setup>1
<sequences>2
<sequence name="Geant4EventActionSequence/EventAction"> <!-- Sequence "EventAction" of type3

"Geant4EventActionSequence" -->4
<action name="Geant4TestEventAction/UserEvent_1"> <!-- Anonymous action -->5

<properties Property_int="01234" <!-- Properties go inline -->6
Property_double="1e11"7
Property_string="’Hello_1’"/>8

</action>9
<action name="UserEvent_2"/> <!-- Global action defined in "actions" -->10

<!-- Only the name is referenced here -->11
<action name="Geant4Output2ROOT/RootOutput"> <!-- ROOT I/O action -->12

DDG4 User Manual 16

Advanced European Infrastructures for Detectors at Accelerators

<properties Output="simple.root"/> <!-- Output file property -->13
</action>14
<action name="Geant4Output2LCIO/LCIOOutput"> <!-- LCIO output action -->15
<properties Output="simple.lcio"/> <!-- Output file property -->16

</action>17
</sequence>18

19
20

<sequence sd="SiTrackerBarrel" type="Geant4SensDetActionSequence">21
<filter name="GeantinoRejector"/>22
<filter name="EnergyDepositMinimumCut"/>23
<action name="Geant4SimpleTrackerAction/SiTrackerBarrelHandler"/>24

</sequence>25
<sequence sd="SiTrackerEndcap" type="Geant4SensDetActionSequence">26
<filter name="GeantinoRejector"/>27
<filter name="EnergyDepositMinimumCut"/>28
<action name="Geant4SimpleTrackerAction/SiTrackerEndcapHandler"/>29

</sequence>30
<!-- ... next sequence ... -->31

</sequences>32
</geant4_setup>33

Here firstly the EventAction sequence is defined with its members. Secondly a sensitive detector
sequence is defined for the subdetector SiTrackerBarrel of type Geant4SensDetActionSequence. The se-
quence uses two filters: GeantinoRejector to not generate hits from geantinos and EnergyDepositMinimumCut

to enforce a minimal energy deposit. These filters are global i.e. they may be applied by many subdetec-
tors. The setup of global filters is described in Section 4.1.3. Finally the action SiTrackerEndcapHandler

of type Geant4SimpleTrackerAction is chained, which collects the deposited energy and creates a collec-
tion of hits. The Geant4SimpleTrackerAction is a template callback to illustrate the usage of sensitive
elements in DDG4 . The resulting hit collection of these handlers by default have the same name
as the object instance name. Analogous below the sensitive detector sequence for the subdetector
SiTrackerEndcap is shown, which reuses the same filter actions, but will build its own hit collection.
Please note:

• It was already mentioned, but once again: Event-, run-, generator-, tracking-, stepping-
and stacking actions sequences have predefined names! These names are fixed and part of the
common knowledge, they cannot be altered. Please refer to Section 3.4 for the names of the
global action sequences.

• the sensitive detector sequences are matched by the attribute sd to the subdetectors created with
the DD4hep detector description package. Values must match!

• In the event that several xml files are parsed it is absolutely vital that the <actions> section is
interpreted before the sequences.

• For each XML file several <sequences> are allowed.

4.1.5 Setup of Geant4 Sensitive Detectors

<geant4_setup>1
<sensitive_detectors>2
<sd name="SiTrackerBarrel"3

type="Geant4SensDet"4
ecut="10.0*MeV"5
verbose="true"6
hit_aggregation="position">7

</sd>8
<!-- ... next sensitive detector ... -->9

</sensitive_detectors>10
</geant4_setup>11

DDG4 User Manual 17

Advanced European Infrastructures for Detectors at Accelerators

4.1.6 Miscellaneous Setup of Geant4 Objects

This section is used for the flexible setup of auxiliary objects such as the electromagnetic fields used in
Geant4:

<geant4_setup>1
<properties>2
<attributes name="geant4_field"3

id="0"4
type="Geant4FieldSetup"5
object="GlobalSolenoid"6
global="true"7
min_chord_step="0.01*mm"8
delta_chord="0.25*mm"9
delta_intersection="1e-05*mm"10
delta_one_step="0.001*mm"11
eps_min="5e-05*mm"12
eps_max="0.001*mm"13
largest_step = "10*m"14
stepper="HelixSimpleRunge"15
equation="Mag_UsualEqRhs">16

</attributes>17
...18

</properties>19
</geant4_setup>20

Important are the tags type and object, which are used to firstly define the plugin to be called and
secondly define the object from the DD4hep description to be configured for the use within Geant4.

4.1.7 Setup of Geant4 Phases

Phases are configured as shown below. However, the use is discouraged, since it is not yet clear if
there are appropriate use cases!

<phases>1
<phase type="RunAction/begin">2

<action name="RunInit"/>3
<action name="Geant4TestRunAction/UserRunInit">4

<properties Property_int="1234"5
Property_double="5e15"6
Property_string="’Hello_2’"/>7

</action>8
</phase>9
<phase type="EventAction/begin">10
<action name="UserEvent_2"/>11

</phase>12
<phase type="EventAction/end">13
<action name="UserEvent_2"/>14

</phase>15
...16

</phases>17

DDG4 User Manual 18

Advanced European Infrastructures for Detectors at Accelerators

4.2 Setting up DDG4 using ROOT-CINT

The setup of DDG4 directly from the the ROOT interpreter using the AClick mechanism is very simple,
but mainly meant for purists (like me ;-)), since it is nearly equivalent to the explicit setup within a
C++ main program. The following code section shows how to do it. For explanation the code segment
is discussed below line by line.

#include "DDG4/Geant4Config.h"1
#include "DDG4/Geant4TestActions.h"2
#include "DDG4/Geant4TrackHandler.h"3
#include <iostream>4

5
using namespace std;6
using namespace DD4hep;7
using namespace DD4hep::Simulation;8
using namespace DD4hep::Simulation::Test;9
using namespace DD4hep::Simulation::Setup;10

11
#if defined(__MAKECINT__)12
#pragma link C++ class Geant4RunActionSequence;13
#pragma link C++ class Geant4EventActionSequence;14
#pragma link C++ class Geant4SteppingActionSequence;15
#pragma link C++ class Geant4StackingActionSequence;16
#pragma link C++ class Geant4GeneratorActionSequence;17
#pragma link C++ class Geant4Action;18
#pragma link C++ class Geant4Kernel;19
#endif20

21
SensitiveSeq::handled_type* setupDetector(Kernel& kernel, const std::string& name) {22

SensitiveSeq sd = SensitiveSeq(kernel,name);23
Sensitive sens = Sensitive(kernel,"Geant4TestSensitive/"+name+"Handler",name);24
sd->adopt(sens);25
sens = Sensitive(kernel,"Geant4TestSensitive/"+name+"Monitor",name);26
sd->adopt(sens);27
return sd;28

}29
30

void exampleAClick() {31
Geant4Kernel& kernel = Geant4Kernel::instance(LCDD::getInstance());32
kernel.loadGeometry("file:../DD4hep.trunk/DDExamples/CLICSiD/compact/compact.xml");33
kernel.loadXML("DDG4_field.xml");34

35
GenAction gun(kernel,"Geant4ParticleGun/Gun");36
gun["energy"] = 0.5*GeV; // Set properties37
gun["particle"] = "e-";38
gun["multiplicity"] = 1;39
kernel.generatorAction().adopt(gun);40

41
Action run_init(kernel,"Geant4TestRunAction/RunInit");42
run_init["Property_int"] = 12345;43
kernel.runAction().callAtBegin (run_init.get(),&Geant4TestRunAction::begin);44
kernel.eventAction().callAtBegin(run_init.get(),&Geant4TestRunAction::beginEvent);45
kernel.eventAction().callAtEnd (run_init.get(),&Geant4TestRunAction::endEvent);46

47
Action evt_1(kernel,"Geant4TestEventAction/UserEvent_1");48
evt_1["Property_int"] = 12345; // Set properties49
evt_1["Property_string"] = "Events";50
kernel.eventAction().adopt(evt_1);51

DDG4 User Manual 19

Advanced European Infrastructures for Detectors at Accelerators

52
EventAction evt_2(kernel,"Geant4TestEventAction/UserEvent_2");53
kernel.eventAction().adopt(evt_2);54

55
kernel.runAction().callAtBegin(evt_2.get(),&Geant4TestEventAction::begin);56
kernel.runAction().callAtEnd (evt_2.get(),&Geant4TestEventAction::end);57

58
setupDetector(kernel,"SiVertexBarrel");59
setupDetector(kernel,"SiVertexEndcap");60
// more subdetectors here61
setupDetector(kernel,"LumiCal");62
setupDetector(kernel,"BeamCal");63

64
kernel.configure();65
kernel.initialize();66
kernel.run();67
std::cout << "Successfully executed application " << std::endl;68
kernel.terminate();69

}70

Line

1

The header file Geant4Config.h contains a set of wrapper classes to easy the creation of objects
using the plugin mechanism and setting properties to Geant4Action objects. These helpers
and the corresponding functionality are not included in the wrapped classes themselves to not
clutter the code with stuff only used for the setup. All contained objects are in the namespace
DD4hep::Simulation::Setup

. 6-10 Save yourself specifying all the namespaces objects are in....

13-19
CINT processing pragmas. Classes defined here will be available at the ROOT prompt after
this AClick is loaded.

22-29
Sampler to fill the sensitive detector sequences for each subdetector with two entries: a handler
and a monitor action. Please note, that this here is example code and in real life specialized
actions will have to be provided for each subdetector.

31 Let’s go for it. here the entry point starts....

32 Create the Geant4Kernel object.

33 Load the geometry into DD4hep .

34 Redefine the setup of the sensitive detectors.

36-40
Create the generator action of type Geant4ParticleGun with name Gun, set non-default properties
and activate the configured object by attaching it to the Geant4Kernel.

42-46
Create a user defined begin-of-run action callback, set the properties and attach it to the begin
of run calls. To collect statistics extra member functions are registered to be called at the
beginning and the end of each event.

48-51
Create a user defined event action routine, set its properties and attach it to the event action
sequence.

53-54
Create a second event action and register it to the event action sequence. This action will be
called after the previously created action.

56-57
For this event action we want to receive callbacks at start- and end-of-run to produce additional
summary output.

59-63 Call the sampler routine to attach test actions to the subdetectors defined.

65-66
Configure, initialize and run the Geant4 application. Most of the Geant4 actions will only be
created here and the action sequences created before will be attached now.

69 Terminate the Geant4 application and exit.

DDG4 User Manual 20

Advanced European Infrastructures for Detectors at Accelerators

CINT currently cannot handle pointers to member functions 1. Hence the above AClick only works in
compiled mode. To invoke the compilation the following action is necessary from the ROOT prompt:

$> root.exe1
***2
* *3
* W E L C O M E to R O O T *4
* *5
* Version 5.34/10 29 August 2013 *6
* *7
* You are welcome to visit our Web site *8
* http://root.cern.ch *9
* *10
***11

12
ROOT 5.34/10 (heads/v5-34-00-patches@v5-34-10-5-g0e8bac8, Sep 04 2013, 11:52:19 on linux)13

14
CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 201015
Type ? for help. Commands must be C++ statements.16
Enclose multiple statements between { }.17
root [0] .X initAClick.C18
.... Setting up the CINT include pathes and the link statements.19

20
root [1] .L ../DD4hep.trunk/DDG4/examples/exampleAClick.C+21
Info in <TUnixSystem::ACLiC>: creating shared libraryexampleAClick_C.so22
.... some Cint warnings concerning member function pointers23

24
root [2] exampleAClick()25
.... and it starts ...26

The above scripts are present in the DDG4/example directory located in svn. The initialization script
initAClick.C may require customization to cope with the installation paths.

4.3 Setting up DDG4 using Python

Given the reflection interface of ROOT, the setup of the simulation interface using DD4hep is of course
also possible using the python interpreted language. In the following code example the setup of Geant4
using the ClicSid example is shown using python 2.

import DDG41
from SystemOfUnits import *2

3
"""4

5
DD4hep example setup using the python configuration6

7
@author M.Frank8
@version 1.09

10
"""11
def run():12

kernel = DDG4.Kernel()13
kernel.loadGeometry("file:../DD4hep.trunk/DDExamples/CLICSiD/compact/compact.xml")14
kernel.loadXML("DDG4_field.xml")15

16

1This may change in the future once ROOT uses clang and cling as the interpreting engine.
2For comparison, the same example was used to illustrate the setup using XML files.

DDG4 User Manual 21

Advanced European Infrastructures for Detectors at Accelerators

lcdd = kernel.lcdd()17
print ’+++ List of sensitive detectors:’18
for i in lcdd.detectors():19

o = DDG4.DetElement(i.second)20
sd = lcdd.sensitiveDetector(o.name())21
if sd.isValid():22
print ’+++ %-32s type:%s’%(o.name(), sd.type(),)23

24
Configure Run actions25
run1 = DDG4.RunAction(kernel,’Geant4TestRunAction/RunInit’)26
run1.Property_int = 1234527
run1.Property_double = -5e15*keV28
run1.Property_string = ’Startrun: Hello_2’29
print run1.Property_string, run1.Property_double, run1.Property_int30
run1.enableUI()31
kernel.registerGlobalAction(run1)32
kernel.runAction().add(run1)33

34
Configure Event actions35
evt2 = DDG4.EventAction(kernel,’Geant4TestEventAction/UserEvent_2’)36
evt2.Property_int = 12345432137
evt2.Property_double = 5e15*GeV38
evt2.Property_string = ’Hello_2 from the python setup’39
evt2.enableUI()40
kernel.registerGlobalAction(evt2)41

42
evt1 = DDG4.EventAction(kernel,’Geant4TestEventAction/UserEvent_1’)43
evt1.Property_int=0123444
evt1.Property_double=1e1145
evt1.Property_string=’Hello_1’46
evt1.enableUI()47

48
kernel.eventAction().add(evt1)49
kernel.eventAction().add(evt2)50

51
Configure I/O52
evt_root = DDG4.EventAction(kernel,’Geant4Output2ROOT/RootOutput’)53
evt_root.Control = True54
evt_root.Output = "simple.root"55
evt_root.enableUI()56

57
evt_lcio = DDG4.EventAction(kernel,’Geant4Output2LCIO/LcioOutput’)58
evt_lcio.Output = "simple_lcio"59
evt_lcio.enableUI()60

61
kernel.eventAction().add(evt_root)62
kernel.eventAction().add(evt_lcio)63

64
Setup particle gun65
gun = DDG4.GeneratorAction(kernel,"Geant4ParticleGun/Gun")66
gun.Energy = 0.5*GeV67
gun.particle = ’e-’68
gun.multiplicity = 169
gun.enableUI()70
kernel.generatorAction().add(gun)71

72
Setup global filters for use in sensitive detectors73
f1 = DDG4.Filter(kernel,’GeantinoRejectFilter/GeantinoRejector’)74

DDG4 User Manual 22

Advanced European Infrastructures for Detectors at Accelerators

f2 = DDG4.Filter(kernel,’ParticleRejectFilter/OpticalPhotonRejector’)75
f2.particle = ’opticalphoton’76
f3 = DDG4.Filter(kernel,’ParticleSelectFilter/OpticalPhotonSelector’)77
f3.particle = ’opticalphoton’78
f4 = DDG4.Filter(kernel,’EnergyDepositMinimumCut’)79
f4.Cut = 10*MeV80
f4.enableUI()81
kernel.registerGlobalFilter(f1)82
kernel.registerGlobalFilter(f2)83
kernel.registerGlobalFilter(f3)84
kernel.registerGlobalFilter(f4)85

86
First the tracking detectors87
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/SiVertexBarrel’)88
act = DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiVertexBarrelHandler’,’SiVertexBarrel’)89
seq.add(act)90
seq.add(f1)91
seq.add(f4)92
act.add(f1)93

94
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/SiVertexEndcap’)95
act = DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiVertexEndcapHandler’,’SiVertexEndcap’)96
seq.add(act)97
seq.add(f1)98
seq.add(f4)99

100
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/SiTrackerBarrel’)101
act = DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiTrackerBarrelHandler’,’SiTrackerBarrel’)102
seq.add(act)103
seq.add(f1)104
seq.add(f4)105

106
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/SiTrackerEndcap’)107
act = DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiTrackerEndcapHandler’,’SiTrackerEndcap’)108
seq.add(act)109

110
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/SiTrackerForward’)111
act = DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiTrackerForwardHandler’,’SiTrackerForward’)112
seq.add(act)113

114
Now the calorimeters115
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/EcalBarrel’)116
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/EcalBarrelHandler’,’EcalBarrel’)117
seq.add(act)118

119
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/EcalEndcap’)120
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/EcalEndCapHandler’,’EcalEndcap’)121
seq.add(act)122

123
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/HcalBarrel’)124
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/HcalBarrelHandler’,’HcalBarrel’)125
act.adoptFilter(kernel.globalFilter(’OpticalPhotonRejector’))126
seq.add(act)127

128
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/HcalOpticalBarrelHandler’,’HcalBarrel’)129
act.adoptFilter(kernel.globalFilter(’OpticalPhotonSelector’))130
seq.add(act)131

132

DDG4 User Manual 23

Advanced European Infrastructures for Detectors at Accelerators

seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/HcalEndcap’)133
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/HcalEndcapHandler’,’HcalEndcap’)134
seq.add(act)135

136
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/HcalPlug’)137
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/HcalPlugHandler’,’HcalPlug’)138
seq.add(act)139

140
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/MuonBarrel’)141
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/MuonBarrelHandler’,’MuonBarrel’)142
seq.add(act)143

144
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/MuonEndcap’)145
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/MuonEndcapHandler’,’MuonEndcap’)146
seq.add(act)147

148
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/LumiCal’)149
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/LumiCalHandler’,’LumiCal’)150
seq.add(act)151

152
seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/BeamCal’)153
act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/BeamCalHandler’,’BeamCal’)154
seq.add(act)155

156
Now build the physics list:157
phys = kernel.physicsList()158
phys.extends = ’FTFP_BERT’159
#phys.transportation = True160
phys.decays = True161
phys.enableUI()162

163
ph = DDG4.PhysicsList(kernel,’Geant4PhysicsList/Myphysics’)164
ph.addParticleConstructor(’G4BosonConstructor’)165
ph.addParticleConstructor(’G4LeptonConstructor’)166
ph.addParticleProcess(’e[+-]’,’G4eMultipleScattering’,-1,1,1)167
ph.addPhysicsConstructor(’G4OpticalPhysics’)168
ph.enableUI()169
phys.add(ph)170

171
phys.dump()172

173
kernel.configure()174
kernel.initialize()175
kernel.run()176
kernel.terminate()177

178
if __name__ == "__main__":179

run()180
181

DDG4 User Manual 24

Advanced European Infrastructures for Detectors at Accelerators

4.4 A Simple Example

Bla-bal.

DDG4 User Manual 25

Advanced European Infrastructures for Detectors at Accelerators

Figure 10: The DDG4 event data model.

5 Higher Level Components

Layered components, which base on the general framework implement higher level functionality such
as the handling of Monte-Carlo truth associations between simulated energy deposits and the corre-
sponding particles or the generic handling of input to the simulation.
To generalize such common behavior it is mandatory that the participating components collaborate
and understand the data components they commonly access. The data model is shown in Figure 10.
Please note, that this data model is by no means to be made persistent and used for physics user
analysis. This model is optimized to support the simulation process and the necessary user actions
to handle MC truth, to easily and relatively fast look up and modify parent-daughter relationships
etc. This choice is based on the assumption, that the additional overhead to convert particles at the
input/output stage is small compared to the actual resource consumption of Geant4 to simulate the
proper detector response. On the other hand this choice has numerous advantages:

• Accepting the fact to convert input records allows to adapt DDG4 in a simple and flexible manner
to any input format. Currently supported is the input from raw LCIO files, StdHep records using
LCIO and ASCII files using the HEPEvt format.

• Similarly as for the input stage, also the output format can be freely chosen by the clients.

• No assumptions was made concerning the structure to store information from energy deposits.
Any information extract produced by the sensitive actions can be adapted provided at the output
stage the proper conversion mechanism is present. The sensitive detectors provided by DDG4
are optional only and by no means mandatory. User defined classes may be provided at
any time. Appropriate tools to extract MC truth information is provided at the output stage.

• The modular approach of the action sequences described in 3.4 allows to easily extend the gener-
ation sequence to handle multiple simultaneous interactions, event overlay or spillover response
very easily 3

In section 5.1 the generic mechanism of input data handling is described.
In section 5.3 the MC truth handling is discussed.
In section 6 we describe the output mechanism.

3The handling of spillover is only possible if during the digitization step the correct signal shape corresponding to the
shift of signal creation is taken into account.

DDG4 User Manual 26

Advanced European Infrastructures for Detectors at Accelerators

Figure 11: The generic handling of input sources to DDG4.

5.1 Input Data Handling

Input handling has several stages and uses several modules:

• First the data structures Geant4PrimaryEvent, Geant4PrimaryInteraction and Geant4PrimaryMap

are initialized by the action Geant4GenerationActionInit and attached to the Geant4Event struc-
ture.

• The initialization is then followed by any number of input modules. Typically each input module
add one interaction. Each interaction has a unique identifier, which is propagated later to all
particles. Hence all primary particles can later be unambiguously be correlated to one of the
initial interactions. Each instance of a Geant4InputAction creates and fills a separate instance
of a Geant4PrimaryInteraction. In section 5.2 the functionality and extensions are discussed in
more detail.

• All individual primary interactions are then merged to only single record using the Geant4-
InteractionMerger component. This components fills the Geant4PrimaryInteraction registered
to the Geant4Event, which serves as input record for the next component,

• the Geant4PrimaryHandler. The primary handler creates the proper G4PrimaryParticle and G4PrimaryVertex

objects passed to Geant4. After this step all event related user interaction with Geant4 has com-
pleted, and the detector simulation may commence.

All modules used are subclasses of the Geant4GeneratorAction and must be added to the Geant4-
GeneratorActionSequence as described in 3.4.
An object of type Geant4PrimaryEvent exists exactly once for every event to be simulated. The empty
Geant4PrimaryEvent is created by the Geant4GenerationActionInit component. All higher level compo-
nents may then access the Geant4PrimaryEvent object and subsequently an individual interaction from

DDG4 User Manual 27

Advanced European Infrastructures for Detectors at Accelerators

the Geant4Context using the extension mechanism as shown in the following code:

/// Event generation action callback1
void SomeGenerationComponent::operator()(G4Event* event) {2

/// Access the primary event object from the context3
Geant4PrimaryEvent* evt = context()->event().extension<Geant4PrimaryEvent>();4
/// Access the container of interactions5
const std::vector<Geant4PrimaryEvent::Interaction*>& inter = evt->interactions();6
/// Access one single interaction to be manipulated by this component7
Geant4PrimaryInteraction* evt->get(m_myInteraction_identifier);8
....9

Please note: To keep components simple, each component should only act on one interaction the
component has to uniquely identify. The identification may be implemented by e.g. an access mask
passed to the component as a property.

5.2 Anatomy of the Input Action

One input action fills one primary interaction. Geant4InputAction instances may be followed by decora-
tors, which allow to to smear primary vertex (Geant4InteractionVertexSmear) or to boost the primary
vertex Geant4InteractionVertexBoost and all related particles/vertices.

Please note, that a possible reduction of particles in the output record may break this unambiguous
relationship between ”hits” and particles.

5.3 Monte-Carlo Truth Handling

As any other component in DDG4 , the was designed using the plugin mechanism ie. the default
implementation which was inspired by the original implementation of the MC thruth handler developed
by the Linear Collider community may easily be overloaded.
The Monte-Carlo thruth handler takes care that

• the proper MC particles are associated with the corresponding hits and tracks.

• To compress the particle record. Geant4 creates a large amount of temporary particles in parti-
cluar in dense areas of the detector such as calorimeters. In calorimeters however, the hits within
a confined volume should be assigned to the incoming track. In addition a track is only supposed
to be kept if it satisfies certain criteria.

To achieve this functionality the Monte-Carlo thruth handler implemented in the class Geant4ParticleHandler
firstly

• implements the interface Geant4MonteCarloTruth which gets called whenever an interaction occurs
in a sensitive volume which is modeled by an instance of a instance of Geant4SensitiveAction.

• to properly manager the MC particle records the Geant4ParticleHandler either inherits or uses
the callbacks provided by the DDG4 interfaces to the

– Geant4GeneratorAction

– Geant4EventAction

– Geant4TrackingAction

– Geant4SteppingAction.

While the response of one track is simulated, all relevant information is extracted in the callbacks
and at the end of the simulation of the track response a decision is taken whether to store the
information of the Geant4 track in the MC particle record or not.

• A Geant4 track is saved in the MC track record if

DDG4 User Manual 28

Advanced European Infrastructures for Detectors at Accelerators

– the track did not intercat with the detector, but is part of the Monte-Carlo record originating
from the original generator consisting of quarks, leptons, gluons, gammas etc.

– the track was declared to Geant4 as a Geant4 primary track from the generator action.
These are either long-living remnants of the underlying hard interaction of particles decaying
macroscopically inside the experiment volume like e.g. B-mesons.

– the track exits the world volume.

– the track is mother particle to secondaries.

– the track created a hit in a ”tracker”-type sensitive volume.

– the track is above a certain energy threshold and has at least one associated hit either in a
calorimter-type volume of a tracker-type volume.

For all tracks purged from the MC particle record, any resulting energy deposit is associated to
the last parent particle stored in the MC particle record.

• To fine-tune the Monte-Carlo truth handler in DDG4 a use class with interface Geant4UserParticleHandler

may be supplied, which allows to customize and fine tune if a given MC particle is supposed to
be kept in the final record or not. This user class receives the identical callbacks as the truth
handler, but at the end of the simulation of each track (the end-tracking-action) a call is issued
by the truth handler and allows to override the decision whether to keep or dismiss storing a
track.

As mentioned above this implementation is only an example how to realize such a Monte-Carlo truth
logic. It is assumed that the interface Geant4ParticleHandler together with the easy-to-use subscription
mechanism to all callbacks provided by Geant4 allow to easily implement other Monte-Carlo truth
mechanisms.

The following table shows all properties accepted by the DDG4 Monte-Carlo truth handler.

Class name Geant4ParticleHandler

File name DDG4/src/Geant4ParticleHandler.cpp

Type Geant4Action

Component Properties: defaults apply
PrintEndTracking (bool) Extra printout at the end of the

tracking action for debugging

PrintStartTracking (bool) Extra printout at the start of the

tracking action for debugging

KeepAllParticles (bool) Flag to override any NC particle removal

SaveProcesses (bool) Save all produces of the specified

Geant4 particle processes

MinimalKineticEnergy (bool) Minimal energy cut required to accept a MC particle

MinDistToParentVertex (bool) Minimal distance to the parent’s

start-vertex in order to become an independent particle

Used to e.g. suppress Delta-rays

DDG4 User Manual 29

Advanced European Infrastructures for Detectors at Accelerators

6 Output Data Handling

The output of the data record of the accepted MC particle record and the corresponding sets of hits in
the various subdetectors is basic to further handing data originating from simulated particle collisions.
In DDG4 the handling of output data is implemented as a specialization of a Geant4EventAction since
the output needs to written at the end of each simulated event.
Currently there are three types of output formats implemented:

• Writing the MC particle record and the Geant4 hits natively as ROOT objects to a ROOT file.
This is a very simple solution, writes the entire event as a ROOT TTree object. The persistent
data format of the objects is the same as the transition data format in memory used during the
simulation step.

• Writing the particle record and the hit structures in LCIO data format. For details of the LCIO
data format please consult the LCIO manual.

• Writing the particle record and the hit structures in the EDMS data format developed by the
CERN/SFT data format. For details of the LCIO data format please consult the LCIO manual.

Unless the native ROOT format is used for data output, the data format of the transient repre-
sentation of Monte-Carlo particles and the resulting tracker- and calorimeter hits differes from the
persistent representation and requires data conversion. The overheads of such conversions however are
typically neglidgeble with respect to the rather large resource usage required for simulation.

The component properties of the generic output class:

Class name Geant4OutputAction

File name DDG4/src/Geant4OutputAction.cpp

Type Geant4Action

Component Properties: defaults apply
Output (string) String representation of the output-file

HandleErrorsAsFatal (bool) Convert any error of the concrete implementation

into a fatal exception causing DDG4 to stop processing.

The component properties of the ROOT output class:

Class name Geant4Output2ROOT

File name DDG4/src/Geant4Output2ROOT.cpp

Type Geant4Action

Component Properties: defaults apply
Section (string) Name of the ROOT TTree to store the event data.

Default: EVENT

HandleMCTruth (bool) Handle the results of the Monte-Carlo thruth handler

when outputting data

DisabledCollections vector<string>

Geant4 filled collections, which should be excluded

from the output record.

DisableParticles (bool) Inhibit the output of the particle record.

DDG4 User Manual 30

Advanced European Infrastructures for Detectors at Accelerators

Figure 12: The Geant4 user initialization sequence to setup DDG4 in multi-threaded mode. The
callbacks buildMaster() is only called in multi-threaded mode.

7 Multi-Threading in DDG4

7.1 Introductory Remarks

Multi-threading as supported by Geant4 is event driven. This means that the simulation of a given
event is handled by one single thread. Geant4 provides specific extensions to ease the users the use of
its multi-threaded extensions [13] 4. These extension divide in a formalized manner all actions to be
performed to setup a Geant4 multi-threaded program into

• common actions to be performed and shared by all threads. This includes the setup of the
geometry and the physics list. The other main area are

• thread-specific actions to be performed for each thread. These are composed by the user actions
called during the processing of each run. These are the run-, event-, generation-, tracking-,
stepping and stacking actions.

To understand the interplay between DDG4 and Geant4 let us quickly recapitulate the Geant4 mecha-
nism how to configure multiple threads. The setup of a multi-threaded application in Geant4 is centered
around two additional classes, which both deal with single- and multi-threaded issues:

• G4VUserActionInitialization class with 2 major callbacks: Build() which is executed for each
worker thread and BuildForMaster() which is executed for master thread only.

• G4VUserDetectorConstruction class with the callbacks Construct(), where the shared geometry is
constructed and ConstructSDandField() where the sensitive detectors and the electro magnetic
fields are provided.

Both these Geant4 provided hooks are modeled in the standard DDG4 way as action queues, which
allow a modular and fine grained setup as shown in Figure 12 and Figure 13.
The DDG4 framework ensures that all user callbacks are installed properly to the Geant4 run manager,
which calls them appropriately at the correct time.
DDG4 provides three callbacks for each sequence. Each callback receives a temporary context argument,
which may be used to shortcut access to basic useful quantities:

struct Geant4DetectorConstructionContext {1
/// Reference to geometry object2
Geometry::LCDD& lcdd;3
/// Reference to the world after construction4
G4VPhysicalVolume* world;5

4Please note that the whole of Geant4 and your client code must be compiled with the compile flag
−DGEANT4BUILDMULTITHREADED = ON

DDG4 User Manual 31

Advanced European Infrastructures for Detectors at Accelerators

/// The cached geometry information6
Geant4GeometryInfo* geometry;7
/// G4 User detector initializer8
G4VUserDetectorConstruction* detector;9

};10

Figure 13: The Geant4 detector initialization sequence to setup DDG4. If supplied, Geant4 calls the
components both, in the single-threaded and in the multi-threaded mode.

The callbacks and the expected functionality are:

1. First the detector geometry is constructed. This happens in the callback constructGeo(...). If a
standard DD4hep geometry is present, this is translation of the geometry could be done by simply
calling the plugin Geant4DetectorGeometryConstruction. Alternatively a user defined plugin could
perform this action.

2. Next the electromagnetic fields for the Geant4 particle tracking is constructed. A generic plugin
Geant4FieldTrackingConstruction may be attached. The corresponding setup parameters are
listed in Section 8. Alternatively a user defined plugin could perform this action.

3. Finally the Geant4 sensitive detectors are instantiated and attached to the sensitive volumes. For
generic setups the plugin Geant4DetectorSensitivesConstruction may be attached. Alternatively
a user defined plugin could perform this action.

7.2 Thread related contexts

DDG4 provides thread related context, which may be accessed or modified by user code. This context,
the Geant4Context and its sub-components, as discussed in Section 5 are available as separate instances
for each event and as such also independently for each worker thread. Hence, no user level locking of
the event context is necessary in any worker thread.

7.3 Thread-Shared Components

Some actions, though executed in the context of a single thread context may only execute as singletons.
An example would be a GeneratorAction, which read input events from file. Clearly the reading of data
from file must be protected and the reading of one event in a given thread must finish, before the next
thread may take over. Another example are data analysis components, which e.g. fill a histogram.
Typically the filling mechanism of a histogram is not thread safe and hence must be protected.
To solve such issues all actions, which may involve such shared activities, a shared action is provided,
which adopts a singleton instance and executes the relevant callbacks in a protected manner. The
shared actions execute the user component in a thread safe envelope.

DDG4 User Manual 32

Advanced European Infrastructures for Detectors at Accelerators

Clearly no run- or event related state in such shared actions may be carried by the component object
across callbacks. The action objects may not be aware of the event related context outside the callback.
Default implementations for such shared actions exist for

• the Geant4RunAction, where the calls to Geant4RunAction::begin and Geant4RunAction::end are
globally locked and the sequential execution of the entire sequence is ensured;

• the Geant4EventAction,

• the Geant4TrackingAction,

• the Geant4SteppingAction and

• the Geant4StackingAction.

In the latter cases the framework ensures thread safety, but does not ensure the reentrant execution
order of the entire sequence.
General Remark: Simple callbacks registered to the run-, event, etc.-actions cannot be protected.
These callbacks may under no circumstances use any event related state information of the called
object.

7.4 Backwards- and Single-Thread-Compatibility

As in the single threaded mode of Geant4, also in the multi-threaded mode all user actions are called
by an instance of the G4RunManager or a sublass thereof, the G4MTRunManager [13].
If the recommended actions in sub-section 7.1 are used to configure the Geant4 application, then in a
rather transparent way both single-threaded and multi-threaded setups can coexist simply by changing
the concrete instance of the G4RunManager. There is one single exception: The user initialization function
G4VUserActionInitialization::BuildForMaster() is only executed in multi-threaded mode. For this
reason, we deprecate the usage. Try to find solutions, without master specific setup using e.g. shared
actions.

7.5 Support for Python Setup in Multi-Threading Mode

The setup of DDG4 in multi-threaded mode requires separate callbacks for the global configuration
(geometry, etc.) and the configuration of the worker threads. In python this setup is performed within
python callable objects, which are either functions or member functions of objects. These functions
may have arguments. The python specific configuration actions

• The user initialization action Geant4PythonInitialization allows to configure python callbacks
for the master and the worker thread setup using the calls:

/// Set the Detector initialization command1
void setMasterSetup(PyObject* callable, PyObject* args);2
/// Set the field initialization command3
void setWorkerSetup(PyObject* callable, PyObject* args);4

to be used in python as a call sequence within the master thread:

init_seq = kernel.userInitialization(True)1
init_action = UserInitialization(kernel,’Geant4PythonInitialization/PyG4Init’)2
init_action.setWorkerSetup(worker_setup_call, < worker_args >)3
init_action.setMasterSetup(master_setup_call, < master_args >)4
init_seq.adopt(init_action)5

The callback argument list < worker args > and < master args > are python tuples con-
taining all arguments expected by the callable objects worker setup call and master setup call
respecyively. The class Geant4PythonInitialization is a subclass of Geant4UserInitialization

and will call the provided functions according to the protocol explained earlier in this section. If
a callback is not set, the corresponding actiion is not executed.

DDG4 User Manual 33

Advanced European Infrastructures for Detectors at Accelerators

• The detector construction action Geant4PythonDetectorConstruction is the corresponding python
action to populate the detector construction sequencer. and supports three ccallbacks:

/// Set the Detector initialization command1
void setConstructGeo(PyObject* callable, PyObject* args);2
/// Set the field initialization command3
void setConstructField(PyObject* callable, PyObject* args);4
/// Set the sensitive detector initialization command5
void setConstructSensitives(PyObject* callable, PyObject* args);6

to be used in python as call sequence within the master thread:

init_seq = self.master().detectorConstruction(True)1
init_action = DetectorConstruction(self.master(),name_type)2
init_action.setConstructGeo(geometry_setup_call, < geometry_args >)3
init_action.setConstructField(field_setup_call, < field_args >)4
init_action.setConstructSensitives(sensitives_setup_call, < sensitives_args >)5
init_seq.adopt(init_action)6

If any of the three callback is not set, the corresponding actiion is not executed. Hereby are
geometry setup call, field setup call and sensitives setup call the callable objects to configure
the geometry, the tracking field and the sensitive detectors. < geometry args >, < field args >
and < sensitives args > are the corresponding callable arguments in the form of a python tuple
object.

All python callbacks are supposed to return the integer ’1’ on success. Any other return code is assumed
to be failure.

7.6 DDG4 Multi-Threading Example

"""1
2

DD4hep simulation example setup DDG43
in multi-threaded mode using the python configuration4

5
@author M.Frank6
@version 1.07

8
"""9
import os, time, DDG410

11
def setupWorker(geant4):12

kernel = geant4.kernel()13
print ’#PYTHON: +++ Creating Geant4 worker thread’14
print "#PYTHON: Configure Run actions"15
run1 = DDG4.RunAction(kernel,’Geant4TestRunAction/RunInit’)16
...17

print "#PYTHON: Configure Event actions"18
prt = DDG4.EventAction(kernel,’Geant4ParticlePrint/ParticlePrint’)19
kernel.eventAction().adopt(prt)20
...21

print "\n#PYTHON: Configure I/O\n"22
evt_root = geant4.setupROOTOutput(’RootOutput’,’CLICSiD_’+time.strftime(’%Y-%m-%d_%H-%M’))23
...24

gen = DDG4.GeneratorAction(kernel,"Geant4GeneratorActionInit/GenerationInit")25
kernel.generatorAction().adopt(gen)26
print "#PYTHON: First particle generator: pi+"27
gen = DDG4.GeneratorAction(kernel,"Geant4IsotropeGenerator/IsotropPi+");28

DDG4 User Manual 34

Advanced European Infrastructures for Detectors at Accelerators

...29
print "#PYTHON: Merge all existing interaction records"30
gen = DDG4.GeneratorAction(kernel,"Geant4InteractionMerger/InteractionMerger")31
kernel.generatorAction().adopt(gen)32
print "#PYTHON: Finally generate Geant4 primaries"33
gen = DDG4.GeneratorAction(kernel,"Geant4PrimaryHandler/PrimaryHandler")34
kernel.generatorAction().adopt(gen)35
print "#PYTHON:and handle the simulation particles."36
part = DDG4.GeneratorAction(kernel,"Geant4ParticleHandler/ParticleHandler")37
kernel.generatorAction().adopt(part)38

39
user = DDG4.Action(kernel,"Geant4TCUserParticleHandler/UserParticleHandler")40

...41
part.adopt(user)42
print ’#PYTHON: +++ Geant4 worker thread configured successfully....’43
return 144

45
def setupMaster(geant4):46

kernel = geant4.master()47
print ’#PYTHON: +++ Setting up master thread for ’,kernel.NumberOfThreads,’ workers.’48
return 149

50
def setupSensitives(geant4):51

print "#PYTHON: Setting up all sensitive detectors"52
geant4.printDetectors()53
print "#PYTHON: First the tracking detectors"54
seq,act = geant4.setupTracker(’SiVertexBarrel’)55

...56
print "#PYTHON: Now setup the calorimeters"57
seq,act = geant4.setupCalorimeter(’EcalBarrel’)58

...59
return 160

61
def run():62

kernel = DDG4.Kernel()63
lcdd = kernel.lcdd()64
install_dir = os.environ[’DD4hepINSTALL’]65
DDG4.Core.setPrintFormat("%-32s %6s %s")66
kernel.loadGeometry("file:"+install_dir+"/DDDetectors/compact/SiD.xml")67
DDG4.importConstants(lcdd)68

69
kernel.NumberOfThreads = 370
geant4 = DDG4.Geant4(kernel,tracker=’Geant4TrackerCombineAction’)71
print "# Configure UI"72
geant4.setupCshUI()73

74
print "# Geant4 user initialization action"75
geant4.addUserInitialization(worker=setupWorker, worker_args=(geant4,),76

master=setupMaster,master_args=(geant4,))77
print "# Configure G4 geometry setup"78
seq,act = geant4.addDetectorConstruction("Geant4DetectorGeometryConstruction/ConstructGeo")79

80
print "# Configure G4 sensitive detectors: python setup callback"81
seq,act = geant4.addDetectorConstruction("Geant4PythonDetectorConstruction/SetupSD",82

sensitives=setupSensitives,sensitives_args=(geant4,))83
print "# Configure G4 sensitive detectors: atach’em to the sensitive volumes"84
seq,act = geant4.addDetectorConstruction("Geant4DetectorSensitivesConstruction/ConstructSD")85

86

DDG4 User Manual 35

Advanced European Infrastructures for Detectors at Accelerators

print "# Configure G4 magnetic field tracking"87
seq,field = geant4.addDetectorConstruction("Geant4FieldTrackingConstruction/MagFieldTrackingSetup")88
field.stepper = "HelixGeant4Runge"89
field.equation = "Mag_UsualEqRhs"90
field.eps_min = 5e-05 * mm91
...92
print "# Setup random generator"93
rndm = DDG4.Action(kernel,’Geant4Random/Random’)94
rndm.Seed = 98765432195
rndm.initialize()96
print "# Now build the physics list:"97
phys = geant4.setupPhysics(’QGSP_BERT’)98
geant4.run()99

100
if __name__ == "__main__":101

run()102

DDG4 User Manual 36

Advanced European Infrastructures for Detectors at Accelerators

8 Existing DDG4 components

In the introduction the longterm goal was expressed, that with DDG4 users should be able to pick
components from a growing palette and connect the selected components using the setup mechanisms
described in Section 4.
Such a palette based approach obviously depends on the availability of documentation for existing
components describing the properties of each component and the interaction of each component within
the DDG4 framework.
All components defer from the basic type Geant4Action. This means all components have the default
properties described in the table below:

Component Properties: default

OuputLevel [int] Output level of the component to customize printouts
Name [string] Component name [read-only]
Control [boolean] Steering of the Geant4 Messenger creation

Important notice for developers:
Since the documentation of developed components is VERY important,
please never forget to supply the corresponding documentation.

At least supply the minimal documentation ash shown below in the ap-
pended examples for the ”Simple” detector response and I/O compo-
nents.

DDG4 User Manual 37

Advanced European Infrastructures for Detectors at Accelerators

8.1 Generic Action Modules

8.1.1 Geant4UIManager

The Geant4UIManager handles interactivity aspects between Geant4, its command handlers (i.e. ter-
minal) and the various components the actions interact.
The Geant4UIManager is a component attached to the Geant4Kernel object. All properties of all
Geant4Action instances may be exported to Geant4 messengers and may hence be accessible directly
from the Geant4 prompt. To export properties from any action, call the enableUI() method of the
action. The callback signature is: void operator()(G4Event* event).

Class name Geant4UIManager

File name DDG4/src/Geant4UIManager.cpp

Type Geant4Action

Component Properties: defaults apply
SessionType (string) Session type (csh, tcsh, etc.
SetupUI (string) Name of the UI macro file
SetupVIS (string) Name of the visualization macro file
HaveVIS (bool) Flag to instantiate Vis manager (def:false, unless VisSetup set)
HaveUI (bool) Flag to instantiate UI (default=true)

8.1.2 Geant4Random

Mini interface to the random generator of the application. Necessary, that on every object creates its
own instance, but accesses the main instance available through the Geant4Context.
This is mandatory to ensure reproducibility of the event generation process. Particular objects may
use a dependent generator from an experiment framework like GAUDI.
internally the engine factory mechanism of CLHEP is used. Please refer there within for valid engine
names and the random seeding mechanism, which may vary between different engines.
Any number of independent random objects may be created and used in parallel. This however, is not
advised to ensure reproducibility.
The first instance of the random action is automatically set to be the Geant4 instance. If another
instance should be used by Geant4, use setMainInstance(Geant4Random* ptr) class method to override
this behavior. Provision, steered by options, is taken to ensure the gRandom of ROOT uses the same
random number engine.

Class name Geant4Random

File name DDG4/src/Geant4Random.cpp

Type Geant4Random

Component Properties: defaults apply
File (string) File name if initialized from file.

If set, engine name and seeds are ignored
Engine (string) Engine type name.

All engines defined in the CLHEP::EngineFactory class are available.
If no type is supplied the engine from the HepRandom generator
instance is taken.

Seed (long) Initial random seed.
Default: 123456789.
If not ZERO terminated, termination is added.

Replace gRandom (bool) Flag to replace the ROOT gRandom instance with this random num-
ber engine. This ensures ROOT and Geant4 use the same random
number engine, hence the same random sequence.

DDG4 User Manual 38

Advanced European Infrastructures for Detectors at Accelerators

8.2 Geant4UserInitialization Implementations

8.2.1 Geant4PythonInitialization

Please see Section 7.5 for an illustration of the usage. The configuration by construction must be
performed using setter-functions rather than properties.

Class name Geant4PythonInitialization

File name DDG4/src/python/Geant4PythonInitialization.cpp

Type Geant4Action

Component Properties: defaults apply

8.2.2 Geant4PythonDetectorConstruction

Please see Section 7.5 for an illustration of the usage. The configuration by construction must be
performed using setter-functions rather than properties.

Class name Geant4PythonDetectorConstruction

File name DDG4/src/python/Geant4PythonDetectorConstruction.cpp

Type Geant4Action

Component Properties: defaults apply

8.3 Predefined Geant4 Physics List Objects

The physics list may be defined entirely data driven using the factory mechanism using a variety of
predefined objects. Though users are free to define private physics lists, typically the predefined physics
lists from Geant4 are used.
The inventory changes over time, new lists appear and obsolete lists are purged, hence we will not list
them explicitly here. For the inventory of available physics lists, please refer to the implementation
files:

• Inventory of predefined physics lists, which may be inherited:
DDG4/plugins/Geant4PhysiscsLists.cpp

• Inventory of predefined physics constructors, which may be instantiated:
DDG4/plugins/Geant4PhysicsConstructors.cpp

• Inventory of predefined process constructors, which may be instantiated:
DDG4/plugins/Geant4Processes.cpp

• Inventory of predefined particle constructors, which may be instantiated:
DDG4/plugins/Geant4Particles.cpp

DDG4 User Manual 39

http://www.cern.ch/frankm/DD4hep/html/_geant4_physics_lists_8cpp_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_physics_constructors_8cpp_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_processes_8cpp_source.html
http://www.cern.ch/frankm/DD4hep/html/_geant4_particles_8cpp_source.html

Advanced European Infrastructures for Detectors at Accelerators

8.4 Geant4 Generation Action Modules

Here we discuss modules, which are intrinsically part of DDG4 and may be attached to the Geant4GeneratorActionSequence.

8.4.1 Base class: Geant4GeneratorAction

The Geant4GeneratorAction is called for every event. During the callback all particles are created which
form the microscopic kinematic action of the particle collision. This input may either origin directly
from an event generator program or come from file.
The callback signature is: void operator()(G4Event* event) See also: Geant4EventAction in the
doxygen documentation.

Class name Geant4GeneratorAction

File name DDG4/src/Geant4GeneratorAction.cpp

Type Geant4Action, Geant4GeneratorAction

Component Properties: defaults apply

8.4.2 Geant4GeneratorActionSequence

The sequence dispatches the callbacks at the beginning of an event to all registered Geant4GeneratorAction

members and all registered callbacks.
See also: The Geant4GeneratorActionSequence is directly steered by the single instance of the
G4VUserPrimaryGeneratorAction, the Geant4 provided user hook, which is private.
See also: Geant4UserGeneratorAction and Geant4GeneratorActionSequence in the doxygen documen-
tation.

Class name Geant4Geant4GeneratorActionSequence

File name DDG4/src/Geant4GeneratorAction.cpp

Type Geant4Action

Component Properties: defaults apply

8.4.3 Geant4GeneratorActionInit

Initialize the Geant4Event objects to host generator and MC truth related information Geant4 actions
to collect the MC particle information. This action should register all event extension required for the
further processing. We want to avoid that every client has to check if a given object is present or not
and than later install the required data structures.
These by default are extensions of type:

• Geant4PrimaryEvent with multiple interaction sections, one for each interaction This is the MAIN
and ONLY information to feed Geant4

• Geant4PrimaryInteraction containing the track/vertex information to create the primary particles
for Geant4. This record is build from the Geant4PrimaryEvent information.

• Geant4PrimaryMap a map of the Geant4Particles converted to G4PrimaryParticles to ease particle
handling later.

• Geant4ParticleMap the map of particles created during the event simulation. This map has directly
the correct particle offsets, so that the merging of Geant4PrimaryInteraction particles and the
simulation particles is easy....

DDG4 User Manual 40

http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_generator_action.html
http://www.cern.ch/frankm/DD4hep/html/struct_d_d4hep_1_1_simulation_1_1_geant4_user_generator_action.html
http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_generator_action_sequence.html

Advanced European Infrastructures for Detectors at Accelerators

Class name Geant4Geant4GeneratorActionInit

File name DDG4/src/Geant4GeneratorActionInit.cpp

Type Geant4GeneratorAction

Component Properties: defaults apply
Angle (double) Lorentz-Angle of boost

Mask (int.bitmask) Interaction identifier

8.4.4 Geant4InteractionVertexBoost

Boost the primary vertex and all particles outgoing the primary interaction in X-direction.
The interaction to be processed by the component is uniquely identified by the Mask property. Two
primary interaction may not have the same mask.
Note [special use case]:
If all contributing interactions of the one event registered in the primary event at the time the
action is called should be handled by one single component instance, set the Mask property to -1.

Class name Geant4InteractionVertexBoost

File name DDG4/src/Geant4InteractionVertexBoost.cpp

Type Geant4GeneratorAction

Component Properties: defaults apply
Angle (double) Lorentz-Angle of boost

Mask (int.bitmask) Interaction identifier

8.4.5 Geant4InteractionVertexSmear

Smear the primary vertex and all particles outgoing the primary interaction.
The interaction to be processed by the component is uniquely identified by the Mask property. Two
primary interaction may not have the same mask.
Note [special use case]:
If all contributing interactions of the one event registered in the primary event at the time the
action is called should be handled by one single component instance, set the Mask property to -1.

Class name Geant4InteractionVertexSmear

File name DDG4/src/Geant4InteractionVertexSmear.cpp

Component Properties: defaults apply
Offset (PxPyPzEVector) Smearing offset

Sigma (PxPyPzEVector) Sigma (Errors) on offset

Mask (int.bitmask) Interaction identifier

8.4.6 Geant4InteractionMerger

Merge all interactions created by each Geant4InputAction into one single record. The input records
are taken from the item Geant4PrimaryEvent and are merged into the Geant4PrimaryInteraction

object attached to the Geant4Event event context.

Class name Geant4InteractionMerger

File name DDG4/src/Geant4InteractionMerger.cpp

Type Geant4GeneratorAction

Component Properties: defaults apply

8.4.7 Geant4PrimaryHandler

Convert the primary interaction (object Geant4PrimaryInteraction object attached to the Geant4Event
event context) and pass the result to Geant4 for simulation.

DDG4 User Manual 41

Advanced European Infrastructures for Detectors at Accelerators

Class name Geant4PrimaryHandler

File name DDG4/src/Geant4PrimaryHandler.cpp

Type Geant4GeneratorAction

Component Properties: defaults apply

8.4.8 Geant4ParticleGun

Implementation of a particle gun using Geant4Particles.
The Geant4ParticleGun is a tool to shoot a number of particles with identical properties into a given
region of the detector to be simulated.
The particle gun is a input source like any other and participates in the general input stage merging
process like any other input e.g. from file. Hence, there may be several particle guns present each
generating its own primary vertex. Use the mask property to ensure each gun generates its own, well
identified primary vertex.
There is one ’user lazyness’ support though: If there is only one particle gun in use, the property
’Standalone’, which by default is set to true invokes the interaction merging and the Geant4 primary
generation directly.
The interaction to be created by the component is uniquely identified by the Mask property. Two
primary interaction may not have the same mask.

Class name Geant4PrimaryHandler

File name DDG4/src/Geant4PrimaryHandler.cpp

Type Geant4GeneratorAction

Component Properties: default
particle (string) Particle type to be shot
energy (double) Particle energy in MeV
position (XYZVector) Pole position of the generated particles in mm
direction (XYZVector) Momentum direction of the generated particles
isotrop (bool) Isotropic particle directions in space.
Mask (int.bitmask) Interaction identifier
Standalone (bool) Setup for standalone execution

including interaction merging etc.

8.4.9 Geant4ParticleHandler

Extract the relevant particle information during the simulation step.
This procedure works as follows:

• At the beginning of the event generation the object registers itself as Monte-Carlo truth handler
to the event context.

• At the begin of each track action a particle candidate is created and filled with all properties
known at this time.

• At each stepping action a flag is set if the step produced secondaries.

• Sensitive detectors call the MC truth handler if a hit was created. This fact is remembered.

• At the end of the tracking action a first decision is taken if the candidate is to be kept for the
final record.

• At the end of the event action finally all particles are reduced to the final record. This logic can
be overridden by a user handler to be attached.

Any of these actions may be intercepted by a Geant4UserParticleHandler attached to the particle
handler. See class Geant4UserParticleHandler for details.

DDG4 User Manual 42

Advanced European Infrastructures for Detectors at Accelerators

Class name Geant4ParticleHandler

File name DDG4/src/Geant4ParticleHandler.cpp

Type Geant4GeneratorAction

Component Properties: defaults apply
KeepAllParticles (bool) Flag to keep entire particle record without any reduction.

This may result in a huge output record.
SaveProcesses (vector(string)) Array of Geant4 process names, which products and parent

should NOT be reduced.
MinimalKineticEnergy (double) Minimal energy below which particles should be ignored

unless other criteria (Process, created hits, etc) apply.

DDG4 User Manual 43

Advanced European Infrastructures for Detectors at Accelerators

8.5 Geant4 Event Action Modules

8.5.1 Base class: Geant4EventAction

The EventAction is called for every event.
This class is the base class for all user actions, which have to hook into the begin- and end-of-event
actions. Typical use cases are the collection/computation of event related properties.
Examples of this functionality may include for example:

• Reset variables summing event related information in the begin-event callback.

• Monitoring activities such as filling histograms from hits collected during the end-event action.

See also: Geant4EventAction in the doxygen documentation.

Class name Geant4EventAction

File name DDG4/src/Geant4EventAction.cpp

Type Geant4EventAction

Component Properties: defaults apply

8.5.2 Geant4EventActionSequence

The Geant4EventActionSequence is directly steered by the single instance of the G4UserEventAction,
the Geant4 provided user hook, which is private.
See also: Geant4UserEventAction in the doxygen documentation.

Class name Geant4EventAction

File name DDG4/src/Geant4EventAction.cpp

Type Geant4EventAction

Component Properties: defaults apply

8.5.3 Geant4ParticlePrint

Geant4Action to print MC particle information.

Class name Geant4ParticlePrint

File name DDG4/src/Geant4ParticlePrint.cpp

Type Geant4EventAction

Component Properties: defaults apply
OutputType (bool) Flag to steer output type.

1: Print table of particles.
2: Print table of particles.
3: Print table and tree of particles.

PrintHits Print associated hits to every particle (big output!)

DDG4 User Manual 44

http://www.cern.ch/frankm/DD4hep/html/class_d_d4hep_1_1_simulation_1_1_geant4_event_action.html
http://www.cern.ch/frankm/DD4hep/html/struct_d_d4hep_1_1_simulation_1_1_geant4_user_event_action.html

Advanced European Infrastructures for Detectors at Accelerators

8.6 Sensitive Detectors

8.6.1 Geant4TrackerAction

Simple sensitive detector for tracking detectors. These trackers create one single hit collection. The
created hits may be written out with the output modules described in Section 8.7.1 and 8.7.2.
The basic specifications are:

Basics:
Class name Geant4SensitiveAction<Geant4Tracker>

File name DDG4/plugins/Geant4SDActions.cpp

Hit collection Name of the readout object

Hit class Geant4Tracker::Hit

File name DDG4/include/Geant4Data.h

Component Properties: defaults apply

8.6.2 Geant4CalorimeterAction

Simple sensitive detector for calorimeters. The sensitive detector creates one single hit collection. The
created hits may be written out with the output modules described in Section 8.7.1 and 8.7.2.
The basic specifications are:

Basics:
Class name Geant4SensitiveAction<Geant4Calorimeter>

File name DDG4/plugins/Geant4SDActions.cpp

Hit collection Name of the readout object

Hit class Geant4Calorimeter::Hit

File name DDG4/include/Geant4Data.h

Component Properties: defaults apply

DDG4 User Manual 45

Advanced European Infrastructures for Detectors at Accelerators

8.7 I/O Components

8.7.1 ROOT Output ”Simple”

8.7.2 LCIO Output ”Simple”

DDG4 User Manual 46

Advanced European Infrastructures for Detectors at Accelerators

References

[1] DD4Hep web page, http://aidasoft.web.cern.ch/DD4hep.

[2] LHCb Collaboration, ”LHCb, the Large Hadron Collider beauty experiment, reoptimised detector
design and performance”, CERN/LHCC 2003-030

[3] S. Ponce et al., ”Detector Description Framework in LHCb”, International Conference on Comput-
ing in High Energy and Nuclear Physics (CHEP 2003), La Jolla, CA, 2003, proceedings.

[4] The ILD Concept Group, ”The International Large Detector: Letter of Intent”,
ISBN 978-3-935702-42-3, 2009.

[5] H. Aihara, P. Burrows, M. Oreglia (Editors), ”SiD Letter of Intent”, arXiv:0911.0006, 2009.

[6] R.Brun, A.Gheata, M.Gheata, ”The ROOT geometry package”,
Nuclear Instruments and Methods A 502 (2003) 676-680.

[7] R.Brun et al., ”Root - An object oriented data analysis framework”,
Nuclear Instruments and Methods A 389 (1997) 81-86.

[8] S. Agostinelli et al., ”Geant4 - A Simulation Toolkit”,
Nuclear Instruments and Methods A 506 (2003) 250-303.

[9] T.Johnson et al., ”LCGO - geometry description for ILC detectors”, International Conference
on Computing in High Energy and Nuclear Physics (CHEP 2007), Victoria, BC, Canada, 2012,
Proceedings.

[10] N.Graf et al., ”lcsim: An integrated detector simulation, reconstruction and analysis environment”,
International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012), New
York, 2012, Proceedings.

[11] R. Chytracek et al., ”Geometry Description Markup Language for Physics Simulation and Analysis
Applications”, IEEE Trans. Nucl. Sci., Vol. 53, Issue: 5, Part 2, 2892-2896, http://gdml.web.cern.ch.

[12] C.Grefe et al., ”The DDSegmentation package”, Non existing documentation to be written.

[13] Geant4 Multi threading Guides. Please see for details:
https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4MTAdvandedTopicsForApplicationDevelopers,
https://twiki.cern.ch/twiki/bin/view/Geant4/QuickMigrationGuideForGeant4V10,
http://geant4.slac.stanford.edu/tutorial/MC2015G4WS/Multithreading.pdf

DDG4 User Manual 47

	Introduction
	The Geant4 User Interface
	DDG4 Implementation
	The Application Core Object: Geant4Kernel
	Action Sequences
	The Base Class of DDG4 Actions: Geant4Action
	The Properties of Geant4Action Instances

	Geant4 Action Sequences
	Sensitive Detectors
	Helpers of Sensitive Detectors: The Geant4VolumeManager
	DDG4 Intrinsic Sensitive Detectors
	Sensitive Detector Filters

	The Geant4 Physics List
	The Support of the Geant4 UI: Geant4UIMessenger

	Setting up DDG4
	Setting up DDG4 using XML
	Setup of the Physics List
	Setup of Global Geant4 Actions
	Setup of Geant4 Filters
	Geant4 Action Sequences
	Setup of Geant4 Sensitive Detectors
	Miscellaneous Setup of Geant4 Objects
	Setup of Geant4 Phases

	Setting up DDG4 using ROOT-CINT
	Setting up DDG4 using Python
	A Simple Example

	Higher Level Components
	Input Data Handling
	Anatomy of the Input Action
	Monte-Carlo Truth Handling

	Output Data Handling
	Multi-Threading in DDG4
	Introductory Remarks
	Thread related contexts
	Thread-Shared Components
	Backwards- and Single-Thread-Compatibility
	Support for Python Setup in Multi-Threading Mode
	DDG4 Multi-Threading Example

	Existing DDG4 components
	Generic Action Modules
	Geant4UIManager
	Geant4Random

	Geant4UserInitialization Implementations
	Geant4PythonInitialization
	Geant4PythonDetectorConstruction

	Predefined Geant4 Physics List Objects
	Geant4 Generation Action Modules
	Base class: Geant4GeneratorAction
	Geant4GeneratorActionSequence
	Geant4GeneratorActionInit
	Geant4InteractionVertexBoost
	Geant4InteractionVertexSmear
	Geant4InteractionMerger
	Geant4PrimaryHandler
	Geant4ParticleGun
	Geant4ParticleHandler

	Geant4 Event Action Modules
	Base class: Geant4EventAction
	Geant4EventActionSequence
	Geant4ParticlePrint

	Sensitive Detectors
	Geant4TrackerAction
	Geant4CalorimeterAction

	I/O Components
	ROOT Output "Simple"
	LCIO Output "Simple"

