
Advanced European Infrastructures for Detectors at Accelerators

DDCond

Conditions Support for the

DD4hep Geometry Description

Toolkit

M. Frank

CERN, 1211 Geneva 23, Switzerland

Advanced European Infrastructures for Detectors at Accelerators

Abstract

Experimental setups in High Energy Physics are highly complex assemblies consisting of
various detector devices typically called subdetectors. To properly interpret the electronic
signals which form the response of particle collisions inside these subdetectors other aux-
iliary data are necessary. These auxiliary data typically are time dependent - though nor-
mally at a much longer scale than the event data itself. The conditions part of the DD4hep

toolkit, called DDCond , addresses the management and the access of such conditions data.
The Manual describes a solution, which pools groups of these time dependent data accord-
ing to its validity. This approach firstly allows to quickly access all relevant data for a
given particle collision. efficient caching mechansims and allows to quickly determine which
data items need to be accessed from a persistent medium. The design is strongly driven by
easy of use; developers of detector descriptions and applications using them should provide
minimal information and minimal specific code to achieve the desired result.

Document History

Document
version Date Author

1.0 10/4/2014 Markus Frank CERN/LHCb

DDCond User Manual I

Advanced European Infrastructures for Detectors at Accelerators

Contents

1 Introduction 1
1.1 Definition of Conditions Data . 1
1.2 Conditions Slices . 1

2 Generic Concepts and Design 2
2.1 Condition Objects and Conditions Data . 2
2.2 The ConditionsMap Interface . 3
2.3 Common Conditions Tools . 4

3 DDCond Conditions Store and Slices 5
3.1 Data Organization . 5
3.2 Slice Configuration and Data Access . 6
3.3 Loading Conditions Data . 7

4 Example Walkthrough 9
4.1 Example to Save Conditions to a ROOT File . 9
4.2 Example to Load and Prepare Conditions(Slices) . 11

DDCond User Manual II

Advanced European Infrastructures for Detectors at Accelerators

1 Introduction

In a high energy physics experiment the data originating from particle collisions (so called Event-data)
in most cases require supplementary, mostly environmental, calibration- or alignment data to extract
the physics content from the recorded event data. These supplementary data are time-dependent and
typically called conditons. The ability of an experiment to produce correct and timely results depends
on the complete and efficient availability of needed conditions for each stage of data handling. This
manual should introduce to the DDCond toolkit, which provides access to conditions data within the
DD4hep data structures [1].
The DDCond extensions to the DD4hep toolkit formalize both the access and the management to time-
dependent data necessary to process the event data. In this manual we will shortly describe the model
used to organize and manage the conditions data internally and then describe the user interface to
actually perform the required actions. These conditions data typically are stored in a database. Nearly
every high energy physics experiment has strong feelings how to efficiently read and store the conditions
data in terms of tablespace organization and data format. For this reason DDCond does not attempt
to solve the persistency problem, but rather defines an interface used to load missing data items from
the persistent medium. Any persistent data representation, which can fulfill the requirements of this
interface may be adopted by the DDCond conditions caching and access mechanism.
At the end of this manual a walk-through of an example is discussed to illustrate, which steps have to
be performed to use the DD4hep conditions store within a client application.

1.1 Definition of Conditions Data

Conditions data are firstly

• raw data values. Raw data values are recorded from measurement devices such as thermometers,
pressure devices or geometrical parameters resulting from survey parameters and others. These
data may change with time, but have one and only one version.

• Secondly there is the large group of data derived from the raw values. These derived values are
transformed from one or several raw values into new data items with an interval of validity being
the intersection of the intervals of validity of its ingredients. Effectively every raw measurement
requires calibration to represent a useful value. Hence, nearly all raw values require such a
transformation. Since these data are re-calibrated, not only one version exists, but many e.g. as
a result of different calibration algorithms.

Typically one data processing application predefines for all events to be processed the corresponding
versions of the conditions data to be used. This time span typically is much larger than the intervals
of validity of single data value. The collection of all individual data item version for such a large time
interval is called a ”global tag”. Within such a global tag, several conditions values of the same data
item, but with a different interval of validity may be accessed.
Given this definition it is evident that the division between raw values and derived conditions is rather
fluent. Derived data as a result of a calibration process are technically identical to raw values in
an analysis application using these re-calibrated constants. Hence, as soon as derived data enter the
conditions database they are technically identical to raw values.
To support such calibration processes producing derived conditions data, DDCond provides a mechanism
to project new values given a set of recipes provided by the user. This recipes can project a set of
coherent new conditions for a given event time accordingly.

1.2 Conditions Slices

Conditions slices define a coherent set of conditions data valid for an event recorded at a specific time.
Each of the individual conditions of the slice has a certain interval of validity, hence the validity of
the entire slice is defined as the intersection of these validities. As a corollary, the slice may be valid
for more than one event as long as the event’s time stamp is within this intersection. To maximize

DDCond User Manual 1

Advanced European Infrastructures for Detectors at Accelerators

the flexibility, and to allow users to implement private slice implementations, slices have a common
interface, the ConditionsMap (See section 2.2). For most practical purposes and to share tools between
slice implementations, this interface is sufficient.

2 Generic Concepts and Design

The DD4hep conditions mechanism was designed to be very flexible concerning back-end implemen-
tations. Most of the conditions and alignment utilities offered by DD4hep are available if a minimal
interface is respected. This minimal interface includes a container called ConditionsMap (See sec-
tion 2.2) and the layout of the conditions objects (See section 2.1). The conditions objects contain
a flexible user defined payload and a generic, interface used to interact with tools and the generic
container object or conditions slices as described in section 1.2.

2.1 Condition Objects and Conditions Data

A conditions objects serves two purposes:

• Firstly, it supports the basic functionality which is generic to any condition – independent of the
actual user payload. This information includes access to the interval of validity and the key to
uniquely identify the condition.

• Secondly, the objects hosts and manages a user payload, the actual conditions data. These data
are freely user defined. An automatic parsing mechanism from a string representation is supported
if the payload-class can properly described using a boost::spirit parsing structure. Default type
implementations are defined for

– all primitive data types,

– ROOT::Math::XYZVector, ROOT::Math::XYZPoint, ROOT::Math::PxPyPzEVector.

– a number of STL containers of the above basic data types:
std::vector<TYPE>, std::list<TYPE>, std::set<TYPE>,
std::map<int,TYPE>, std::map<string,TYPE>,
std::pair<int,TYPE>, std::pair<string,TYPE>.

Additional types can easily be implemented using boost::spirit if the basic representation is in
the form of a string. Dummy boost::spirit parsers may be implemented if the conversion to and
from strings is not required.

• Thirdly, it supports the basic functionality required by a conditions management framework,
which implements the ConditionsMap interface.

For completeness we include here the basic data access methods of the conditions class
(see DD4hep/Conditions.h):

class Condition: public Handle<detail::ConditionObject> {

/** Interval of validity */

/// Access the IOV type

const IOVType& iovType() const;

/// Access the IOV block

const IOV& iov() const;

/** Conditions identification using integer keys. */

/// Hash identifier

key_type key() const;

/// DetElement part of the identifier

detkey_type detector_key() const;

/// Item part of the identifier

itemkey_type item_key() const;

DDCond User Manual 2

http://www.cern.ch/frankm/DD4hep/classdd4hep_1_1_condition.html

Advanced European Infrastructures for Detectors at Accelerators

/** Conditions meta-data and handling of the data binding */

/// Access the opaque data block

OpaqueData& data() const;

/// Access to the type information

const std::type_info& typeInfo() const;

/// Access to the grammar type

const BasicGrammar& descriptor() const;

/// Check if object is already bound....

bool is_bound() const { return isValid() ? data().is_bound() : false; }

/// Bind the data of the conditions object to a given format.

template <typename T> T& bind();

/// Set and bind the data of the conditions object to a given format.

template <typename T> T& bind(const std::string& val);

/// Generic getter. Specify the exact type, not a polymorph type

template <typename T> T& get();

/// Generic getter (const version). Specify the exact type, not a polymorph type

template <typename T> const T& get() const;

...

};

Please be aware that the access to the IOV and the IOVType is only possible if supported by the
caching mechanism.
Using the OpaqueData data structure and its concrete implementation, the user can map any data
item to the conditions object using the bind() method and retrieve the data back using get(). Clearly,
the left should know what the right does and the types to be retrieved back must match be bound data
types.
The following code-snippet shows how to bind conditions data:

Condition cond = ...;

// Fill conditions data by hand:

std::vector<int>& data = cond.bind<std::vector<int> >();

data.push_back(0);

data.push_back(1);

// Fill conditions data from the string representation using boost::spirit:

std::string str = "[0,1,2]";

std::vector<int>& data = cond.bind<std::vector<int> >(str);

int i = data[0];

This is an example how to access already bound data:
Condition cond = ...;

// Fill conditions data by hand:

std::vector<int>& data = cond.get<std::vector<int> >();

2.2 The ConditionsMap Interface

The ConditionsMap interface (see defines the lowest common denominator to allow tools or clients
to interact with conditions of a given slice. This interface defines the interaction of clients with a
conditions slice. These interactions cover both the data access and the data management within a
slice. The interface allows to

• access individual conditions by the detector element and a given item key. The interface allows

• to scan conditions according to the detector element or

• to scan all conditions contained. Further it allows

• insert conditions to the mapping and

• to clear the content.

DDCond User Manual 3

Advanced European Infrastructures for Detectors at Accelerators

The provision of these basic interaction mechanisms allows us to build very generic tools firstly for
conditions, but also later for the management and th computation of alignment data as described in
the DDAlign manual [2].
The ConditionsMap interface class, which supports this basic functionality has the following entry
points:

class ConditionsMap {

public:

/// Insert a new entry to the map. The detector element key and

/// the item key make a unique global conditions key

virtual bool insert(DetElement detector,

Condition::itemkey_type key,

Condition condition) = 0;

/// Interface to access conditions by hash value. The detector element key

/// and the item key make a unique global conditions key

virtual Condition get(DetElement detector,

Condition::itemkey_type key) const = 0;

/// Interface to scan data content of the conditions mapping

virtual void scan(const Condition::Processor& processor) const = 0;

/// No ConditionsMap overload: Access all conditions within

/// a key range in the interval [lower,upper]

virtual std::vector<Condition> get(DetElement detector,

Condition::itemkey_type lower,

Condition::itemkey_type upper) const;

/// Interface to partially scan data content of the conditions mapping

virtual void scan(DetElement detector,

Condition::itemkey_type lower,

Condition::itemkey_type upper,

const Condition::Processor& processor) const;

};

Such ConditionsMap implementations can easily be constructed using standard STL maps. The
lookup key is constructed out of two elements:

• The detector element this condition belongs to and

• an identifier of condition within this detector element.

An efficient implementation of a longword key would consist of the tuple:

[hash32(conditions name), hash32(det− element path)],

which resembles to an ordered sequence of conditions according to their detector element. A special im-
plementation, which implements this user interface is the ConditionsSlice implemented in the DDCond

package (See section 3 for details).

2.3 Common Conditions Tools

• ConditionsPrinter A tool to print conditions by scanning conditions for a single DetElement
or the entire sub-tree. See DDCore/ConditionsPrinter.h for details).

• ConditionsProcessor A wrapper to support condition functors implementing the default call-
back:

int operator() (Condition consition);

The return value may be used to e.g. collect counters.

DDCond User Manual 4

http://www.cern.ch/frankm/DD4hep/classdd4hep_1_1cond_1_1_conditions_printer.html

Advanced European Infrastructures for Detectors at Accelerators

Figure 1: The graphical representation of the organisation of the conditions data in DD4hep .

3 DDCond Conditions Store and Slices

The ConditionsMap interface allows tools to work with various conditions data stores. DDCond pro-
vides an efficient implementation of such a store, which is described in the following chapters.

3.1 Data Organization

The basic assumption of the DDCond conditions store to optimize the access and the management of
conditions data can be very simply summarized: it is assumed, that groups of data items exist, which
have a common interval of validity. In other words: given a certain event, valid or invalid conditions
can quickly be identified by checking the so called ”interval of validity” of the entire group with the
time stamp of the event. This interval of validity defines the time span for which a given group of
processing parameters is valid. It starts and ends with a time stamp. The definition of a time stamp
may be user defined and not necessarily resemble to values in seconds or fractions thereof. Time stamps
could as well be formulated as an interval of luminosity sections, run numbers, fill numbers or entire
years.
Groups of parameters associated to certain intervals of validity can be very effectively managed if
pooled together according to the interval of validity. This of course assumes that each group contains
a significant number of parameters. If each of these pools only contains one single value this would not
be an efficient.
This assumption is fundamental for this approach to be efficient. If the data are not organized accord-
ingly, the caching mechanism implemented in DDCond will still work formally. However, by construction
it cannot not work efficiently. Resources both in CPU and memory would be wasted at run-time. The

DDCond User Manual 5

Advanced European Infrastructures for Detectors at Accelerators

necessity to properly organize the conditions data becomes immediately evident in Figure 1: Users can
organize data according to certain types, These types are independently managed and subdivided into
pools. Each of these pools manages a set of conditions items sharing the same interval ov validity.
The internal organization of the conditions data in DDCond is entirely transparent to the user. The
description here is contained for completeness and for the understanding of the limitations of the
implemented approach. If different requirements or access patterns concerning the access to conditions
data arise, it should though be feasible to implement these fairly straight forward using a suited
approach.

3.2 Slice Configuration and Data Access

As defined in section 1.2, the conditions slice is the main entity to project conditions suitable to process
a given particle collision (see DDCond/ConditionsContent.h for details). Figure ?? shows the data
content of a conditions slice. As shown also in Figure 3, there are several steps to be performed before
a conditions slice is ready to be used:

1. Create the conditions data slice.

2. Setting up the data content of the slice by attaching an object of type ConditionsContent.

3. Preparing the conditions data slice.

4. Using the conditions data slice.

Figure 2: The data content of a ConditionsSlice containing the desired content (ConditionsContent),
the pool to access the conditions data by key (UserPool) and optional containers showing the status
of partial or unsuccessful load and prepare operations.

The ConditionsContent (see DDCond/ConditionsSlice.h for details) is a simple object, which contains
load addresses to identify persistent conditions within the database/persistent schema used and a set
of dependency rules to compute the corresponding derived conditions.
The ConditionsSlice holds a consistent set of conditions valid for a given interval of validity, which is the
intersection of the intervals of validity of all contained conditions. The has the following consequences
for the client when using a prepared ConditionsSlice:

• ConditionsSlice objects are prepared by the client framework. Specific algorithms and other code
fragments developed by physicist users should not deal with such activities. In multi-threaded
applications the preparation of a ConditionsSlice may be done in a separate thread.

• Once prepared, the slice nor the contained conditions may be altered. All contained conditions
must be considered read-only.

DDCond User Manual 6

http://www.cern.ch/frankm/DD4hep/classdd4hep_1_1cond_1_1_conditions_content.html
http://www.cern.ch/frankm/DD4hep/classdd4hep_1_1cond_1_1_conditions_slice.html

Advanced European Infrastructures for Detectors at Accelerators

Figure 3: The interaction of a user with the conditions data store using the ConditionsSlice and the
ConditionsManager interface to define the conditions content, prepare the data and then access the
loaded data from the slice projected according to the required interval of validity.

• Since the slice is considered read-only, it can be used by multiple clients simultaneously. In
particular, multiple threads may share the same slice.

• A ConditionsSlice may only be re-used and prepared according to a different interval of validity
once no other clients use it.

• At any point of time any number of ConditionsSlice objects may be present in the client frame-
work. There is no interference as long as the above mentioned requirements are fulfilled.

The fact that multiple instances of the conditions slices may be present as well as the fact that the
preparation of slices and their use is strictly separated makes then ideal for the usage within multi-
threaded event processing frameworks. As shown in figure 4, the following use cases can easily be
met:

• Mulitple threads may share the same slice while processing event data (thread 1-3) as long as the
time stamp of the event data processed by each thread is contained in the interval of validity of
the slice.

• At the same time another thread may process event data with a different time stamp. The
conditions for this event were prepared using another slice (thread 4-N).

3.3 Loading Conditions Data

The loading of conditions data is highly experiment specific. Different access patterns and load imple-
mentations (single threaded, multi-threaded, locking etc.) make it close to impossible to implement
any solution fitting all needs. For this reason the loading of conditions is deferred to an abstract
implementation, which is invoked during the preparation phase of a conditions slice if the required
data are not found in the conditions cache. This data loader interface (see ConditionsDataLoader.h
for details), receives all relevant callbacks from the framework to resolve missing conditions and pass
the loaded objects to the framework for the management. The callback to be implemented by the
framework developers are:

DDCond User Manual 7

http://www.cern.ch/frankm/DD4hep/classdd4hep_1_1cond_1_1_conditions_data_loader.html

Advanced European Infrastructures for Detectors at Accelerators

Figure 4: MT.

/// Interface for a generic conditions loader

/**

* Common function for all loader.

*/

class ConditionsDataLoader : public NamedObject, public PropertyConfigurable {

typedef Condition::key_type key_type;

typedef std::map<key_type,Condition> LoadedItems;

typedef std::vector<std::pair<key_type,ConditionsLoadInfo*> > RequiredItems;

public:

....

/// Load a number of conditions items from the persistent medium according to the required IOV

virtual size_t load_many(const IOV& req_validity,

RequiredItems& work,

LoadedItems& loaded,

IOV& combined_validity) = 0;

};

The arguments to the callback contain the necessary information to retrieve the requested items.

DDCond User Manual 8

Advanced European Infrastructures for Detectors at Accelerators

4 Example Walkthrough

4.1 Example to Save Conditions to a ROOT File

To illustrate the usage of the DDCond package when saving conditions, an example is discussed here in
detail. The full example is part of the conditions unit tests and can be found in the DD4hep examples.
(See examples/Conditions/src/ConditionExample manual save.cpp).
The examples uses conditions names and detector element names explicitly and hence requires a fixed
detector description being loaded in memory. For simplicity we use here the Minitel example from
the examples/ClientTests. However, the example is very generic and also the conditions are ”generic”,
hence any geometry would work.

Prerequisites:

A valid compact geometry description to be loaded during the program startup.

Plugin Invocation:

A valid example conditions data file is required. Then use the default way to invoke plugins:
$ > geoPluginRun -destroy \

-plugin DD4hep ConditionExample manual save \
-input file : ${DD4hep DIR}/examples/AlignDet/compact/Telescope.xml \
-conditions Conditions.root -runs 10

Example Code:

int num_run = <number of condition loads>;1
const string conditions = <conditions file name>;2
const string geometry = <geometry compact xml description";3

4
description.fromXML(geometry);5
description.apply("DD4hep_ConditionsManagerInstaller",0,(char**)0);6

7
ConditionsManager manager = ConditionsManager::from(description);8
manager["PoolType"] = "DD4hep_ConditionsLinearPool";9
manager["UserPoolType"] = "DD4hep_ConditionsMapUserPool";10
manager["UpdatePoolType"] = "DD4hep_ConditionsLinearUpdatePool";11
manager.initialize();12

13
shared_ptr<ConditionsContent> content(new ConditionsContent());14
shared_ptr<ConditionsSlice> slice(new ConditionsSlice(manager,content));15

16
const IOVType* iov_typ = manager.registerIOVType(0,"run").second;17
if (0 == iov_typ)18

except("ConditionsPrepare","++ Conditions IOV type registration failed!");19
20

Scanner(ConditionsKeys(*content,INFO),description.world());21
Scanner(ConditionsDependencyCreator(*content,DEBUG),description.world());22

23
// Have 10 run-slices [11,20] [91,100]24
for(int i=0; i<num_run; ++i) {25

IOV iov(iov_typ, IOV::Key(1+i*10,(i+1)*10));26
ConditionsPool* iov_pool = manager.registerIOV(*iov.iovType, iov.key());27
// Create conditions with all deltas. Use a generic creator28

DDCond User Manual 9

Advanced European Infrastructures for Detectors at Accelerators

Scanner(ConditionsCreator(*slice, *iov_pool, INFO),description.world(),0,true);29
}30

31

Explanation:
Line

1-3 Definition of processing parameters.

5 Load the detector description using the compact notation.

6 Install the conditions manager implementation using the plugin mechanism.

8 Access conditions manager instance from the Detector interface.

9-11 Configure the properties of the conditions manager.

12 Initialize the conditions manager instance.

14-15 Create an empty ConditionsSlice instance the container with the desired conditions content.

17
Register IOV type the Conditions Manager. The IOV types are part of the conditions persis-
tency mechanism. They may not change with time and have to be defined by the experiment
once and for all!

18-19
This is example specific and only a shortcut to fill the required conditions content and the
derivation rules.
In real life this would be intrinsic to the experiment’s data processing framework.

18
Populate the ConditionsContent instance with the addresses (keys) of the conditions required:
We scan the DetElement hierarchy and add a couple of conditions for each DetElement

19
Add for each DetElement 3 derived conditions, which all depend on the persistent condition
derived data.
In the real world this would be very specific derived actions.

DDCond User Manual 10

Advanced European Infrastructures for Detectors at Accelerators

4.2 Example to Load and Prepare Conditions(Slices)

To illustrate the usage of the DDCond package when loading conditions, an example is discussed here in
detail. The full example is part of the conditions unit tests and can be found in the DD4hep examples.
(See examples/Conditions/src/ConditionExample manual load.cpp).
The examples uses conditions names and detector element names explicitly and hence requires a fixed
detector description being loaded in memory. For simplicity we use here the Minitel example from
the examples/ClientTests. However, the example is very generic and also the conditions are ”generic”,
hence any geometry would work.

Prerequisites:

A valid example conditions data file is required, since in this example we load the conditions and
inject them to the store from an already existing root file. To obtain such a file for a given geometry,
execute the example plugin:
$ > geoPluginRun -destroy \

-plugin DD4hep ConditionExample manual save \
-input file : ${DD4hep DIR}/examples/AlignDet/compact/Telescope.xml \
-conditionsConditions.root -runs 10

Plugin Invocation:

A valid example conditions data file is required. Then use the default way to invoke plugins:
$ > geoPluginRun -destroy \

-plugin DD4hep ConditionExample manual load \
-input file : ${DD4hep DIR}/examples/AlignDet/compact/Telescope.xml \
-conditions Conditions.root -runs 10

Example Code:

int num_run = <number of condition loads>;1
const string conditions = <conditions file name>;2
const string geometry = <geometry compact xml description";3

4
description.fromXML(geometry);5
description.apply("DD4hep_ConditionsManagerInstaller",0,(char**)0);6

7
ConditionsManager manager = ConditionsManager::from(description);8
manager["PoolType"] = "DD4hep_ConditionsLinearPool";9
manager["UserPoolType"] = "DD4hep_ConditionsMapUserPool";10
manager["UpdatePoolType"] = "DD4hep_ConditionsLinearUpdatePool";11
manager["LoaderType"] = "root";12
manager.initialize();13

14
shared_ptr<ConditionsContent> content(new ConditionsContent());15
shared_ptr<ConditionsSlice> slice(new ConditionsSlice(manager,content));16

17
Scanner(ConditionsKeys(*content,INFO),description.world());18
Scanner(ConditionsDependencyCreator(*content,DEBUG),description.world());19

20
const IOVType* iov_typ = manager.iovType("run");21
for (int irun=0; irun < num_runs; ++irun) {22

IOV iov(iov_typ,irun*10+5);23

DDCond User Manual 11

Advanced European Infrastructures for Detectors at Accelerators

ConditionsManager::Result r = manager.prepare(iov,*slice);24
if (r.missing != 0) {25

except("Example",26
"Conditions prepare step for IOV %s FAILED. There are %ld missing conditions.",27
r.missing, iov.str().c_str());28

}29
Scanner(ConditionsPrinter(slice.get(),"Example"),description.world());30

}31

Explanation:
Line

1-3 Definition of processing parameters.

5 Load the detector description using the compact notation.

6 Install the conditions manager implementation using the plugin mechanism.

8 Access conditions manager instance from the Detector interface.

9-12 Configure the properties of the conditions manager.

13 Initialize the conditions manager instance.

15-16 Create an empty ConditionsSlice instance the container with the desired conditions content.

18-19
This is example specific and only a shortcut to fill the required conditions content and the
derivation rules.
In real life this would be intrinsic to the experiment’s data processing framework.

18
Populate the ConditionsContent instance with the addresses (keys) of the conditions required:
We scan the DetElement hierarchy and add a couple of conditions for each DetElement

19
Add for each DetElement 3 derived conditions, which all depend on the persistent condition
derived data.
In the real world this would be very specific derived actions.

22-31 Emulate a pseudo event loop: Our conditions are of type ”run”.

23
This is the IOV we want to use for this ”processing step”. The conditions filled into the slice
during the prepare step will satisfy this IOV requirement.

24
Conditions prepare step. Select the proper set of conditions from the store (or load them if
needed). Attach the selected conditions to the user pool.

25-29
Check the result of the prepare step. If anything would be missing, the parameter r.missing of
the return code would be non-zero.

30

Emulate data processing algorithms: Here we only scan the DetElement tree and print all
conditions.
We know what we expect since we defined the content the same way! In the printer we can
access the conditions directly from the slice, since the slice implements the ConditionsMap
interface.

DDCond User Manual 12

Advanced European Infrastructures for Detectors at Accelerators

References

[1] M.Frank, DD4hep manual.

[2] M.Frank, DDAlign manual.

DDCond User Manual 13

	Introduction
	Definition of Conditions Data
	Conditions Slices

	Generic Concepts and Design
	Condition Objects and Conditions Data
	The ConditionsMap Interface
	Common Conditions Tools

	DDCond Conditions Store and Slices
	Data Organization
	Slice Configuration and Data Access
	Loading Conditions Data

	Example Walkthrough
	Example to Save Conditions to a ROOT File
	Example to Load and Prepare Conditions(Slices)

