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Abstract

Experimental setups in High Energy Physics are highly complex assemblies consisting of
various detector devices typically called subdetectors. Contrary to the ideal world, where all
these components are of perfect shape and at exact positions, existing devices have imper-
fections both in their shape and their relative and absolute positions. These are described
by the alignment parameters.
To still measure the detector response from particle collisions with the highest possible
precision, these imperfections are taken into account when converting measured signals
to space-points in the measurement devices. This procedure is called detector alignment.
DD4hep does not want to solve the exact problem of the detector alignment itself, but rather
support firstly algorithms determining the alignment parameters and secondly support the
application which apply the measured alignment parameters and apply them to the ideal
geometry for further event data processing.
We will present the tools to support the detector alignment procedures using the DD4hep

detector description toolkit. The DDAlign toolkit implements a modular and flexible ap-
proach to introduce and access the alignment parameters.
The design is strongly driven by easy of use; developers of detector descriptions and applica-
tions using them should provide minimal information and minimal specific code to achieve
the desired result.
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1 Introduction

This manual should introduce to the DDAlign framework. One goal of DDAlign is to easily model
geometrical imperfections applied to the ideal geometry of detection devices as they are typically used
in high energy physics experiments.
To avoid confusion within this document, a few terms need to be defined with respect to detector
alignment:

• The ideal geometry describes the detector as it was designed. Such a detector is an utopia, which
can never be realized in terms of the placement of the individual components as such.

• The actual geometry describes - as a first approximation to the real world - the real detector
at a given time valid for a rather significant amount of time e.g. for a year of data taking.
The actual geometry typically includes corrections deduced e.g. from optical surveys etc. The
actual geometry does not change during the life-time of an analysis or calibration process. In the
following this is called Global Alignment. The transformation of the ideal geometry to the actual
geometry is steered by alignment parameters aka Alignment Deltas. Such deltas may be applied
at any level of the geometrical hierarchy. In short, the actual geometry results from the ideal
geometry after applying the global Alignment Deltas and is then the geometry in memory. The
ROOT geometry toolkit is the only one, which allows for global alignment procedures 1.

• Realignment then defines the procedures to correct data collected in particle collisions. These
data are taken with the real, a priori unknown geometry, which on top of the actual geometry
suffers from small shifts e.g. due to temperature or pressure changes. These shifts normally
are frequently computed by specialized applications with respect to the to the actual geometry
and typically are valid for relatively short time periods O(1 hour). These shifts, called Alignment
Deltas, are used to re-align the detector response for physics analysis. This process in the following
is called Local Alignment. The handling of the Alignment Deltas for local alignments in fact is
very similar to the handling of detector conditions implemented in the package DDCond [7]. In
section 4 this issue is further elaborated.

Technically the Alignment Deltas used for the global alignment and the Alignment Deltas used for the
local alignment are identical. Though it should be stressed that the use is entirely different: Whereas
the first actually alter the geometry, the latter are only used to properly interpret the data collected.
DDAlign formalizes both the access and the application of alignment parameters to the ideal geometry.
The possibility to properly describe actual geometries with respect to ideal geometries is essential to un-
derstand the detector response to particle collisions and to connect response of geometrical independent
areas of the experiment e.g. to one single track.
In this manual we will shortly describe the model used to describe an experiments detector description
and then in more detail document the support for alignment with its programming interfaces.

1.1 Generic Detector Description Model

This is the heart of the DD4hep detector description toolkit. Its purpose is to build in memory a model
of the detector including its geometrical aspects as well as structural and functional aspects. The design
reuses the elements from the ROOT geometry package and extends them in case required functionality
is not available. Figure 1 illustrates the main players and their relationships [1]. Any detector is
modeled as a tree of Detector Elements, the entity central to this design, which is represented in
the implementation by the DetElement class [2]. It offers all applications a natural entry point to
any detector part of the experiment and represents a complete sub-detector (e.g. TPC), a part of a
sub-detector (e.g. TPC-Endcap), a detector module or any other convenient detector device. The main
purpose is to give access to the data associated to the detector device. For example, if the user writes
some TPC reconstruction code, accessing the TPC detector element from this code will provide access
the all TPC geometrical dimensions, the alignment and calibration constants and other slow varying

1A conversion of this geometry e.g. to Geant4 (using the functionality provided by DDG4 allow to simulate distorted
geometries with the Geant4 toolkit.
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Figure 1: Class diagram with the main classes and their relations for the Generic Detector Description
Model. The implementing ROOT classes are shown in brackets.

conditions such as the gas pressure, end-plate temperatures etc. The Detector Element acts as a data
concentrator. Applications may access the full experiment geometry and all connected data through
a singleton object of type Detector, which provides management, bookkeeping and ownership to the
model instances.
The geometry is implemented using the ROOT geometry classes, which are used directly without unnec-
essary interfaces to isolate the end-user from the actual ROOT based implementation. DDAlign allows
client to access, manage and apply alignment parameters or smallish changes to the ideal geometry.
The mechanism to achieve this is described in the following.

1.2 Detector Element Tree and the Geometry Hierarchy

The geometry part of the detector description is delegated to the ROOT classes. Logical V olumes
are the basic objects used in building the geometrical hierarchy. A Logical V olume is a shape with
its dimensions and consist of a given material. They represent unpositioned objects which store all
information about the placement of possibly embedded volumes. The same volume can be replicated
several times in the geometry. The Logical V olume also represents a system of reference with respect
to its containing volumes. The reuse of instances of Logical V olumes for different placements optimizes
the memory consumption and detailed geometries for complex setups consisting of millions of volumes
may be realized with reasonable amount of memory. The difficulty is to identify a given positioned
volume in space and e.g. apply alignment parameters to one of these volumes. The relationship between
the Detector Element and the placements is not defined by a single reference to the placement, but the
full path from the top of the detector geometry model to resolve existing ambiguities due to the reuse
of Logical V olumes. Hence, individual volumes must be identified by their full path from mother to
daughter starting from the top-level volume.
The tree structure of Detector Elements is a parallel structure to the geometrical hierarchy. This
structure will probably not be as deep as the geometrical one since there would not need to associate
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Figure 2: The object diagram of a hypothetical TPC detector showing in parallel the Detector Element
and the Geometry hierarchy and the relationships between the objects.

detector information at very fine-grain level - it is unlikely that every little metallic screw needs as-
sociated detector information such as alignment, conditions, etc. Though this screw and many other
replicas must be described in the geometry description since it may be important e.g. for its material
contribution in the simulation application. Thus, the tree of Detector Elements is fully degenerate and
each detector element object will be placed only once in the detector element tree as illustrated for a
hypothetical Time Projection Chamber (TPC) detector in Figure 2 with an ideal geometry, where no
positioning corrections are applied to neither child. It is essential to realize that the geometry tree in
an ideal geometry is degenerate contrary to the tree of detector elements.
It should be noted, that alignment parameters may be applied to any volume of the ideal geometry.
The alignment only affects the actual position of a volume it is e.g. irrelevant if the volume is sensitive
or not.

2 Global Alignment

2.1 Global Alignment of Detector Components

In this section the backgrounds of the Global Alignment is described. Alignment parameters never
apply in the same way to all placements of the same volume in this hierarchy. Hence, to (re-)align a
volume in the hierarchy means to logically lift a full branch of placements from the top volume down
to the element to be (re-)aligned out of this shared hierarchy and apply a correction matrix to the last
node. This procedure is illustrated in Figure 5. Re-alignment of volumes may occur at any level. In
the above example of a TPC this results in the following effects:

• A realignment of the entire subdetector, i.e. the TPC as a whole, would affect consequently move
all contained children with respect to the top level coordinate system. An example is shown
in Figure 5 (a). A movement of the subdetector would affect all transformation between local
coordinates of any part of the subdetector to the top level coordinate system. Such effects would
be visible at all stages of the data processing e.g. when translating signals from particles into
global coordinates.

• A realignment of parts of a subdetector affects only the partial subdetector itself and child volumes
at lower levels. As in the example, where the entire subdetector is moved, here only the sectors
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Figure 3: The object diagram of a hypothetical TPC detector showing in parallel the Detector Element
and the Geometry hierarchy and examples of mispositioned detector parts: (a) mispositioned entire
subdetector (translation), (b) mispositioned end-cap (tilt) and (c) mispositioned individual sectors
within one endcap.

on one side of the TPC would be affected as shown in Figure 5 (b).

• In Figure 5 (c) within one end-cap of the TPC individual sectors may not be positioned at the
ideal location (Figure 5 (c) exaggerates: ”flying sectors” are a rather rare case in reality). Finally
also the sectors itself could be fragmented and be assemblies of other shapes, which are not ideally
placed and may need correction.

The origin of the volume misplacements may be many-fold:

• Elements may be weak and assembled parts move due to weak support structures. This is
a common problem e.g. for tracking detectors, where heavy and solid structures dramatically
influence the measurement result. Misplaced sectors could e.g. be the consequence of a deforming
end-cap frame due to the weight of the sectors.

• Environmental conditions such as the temperature may influence the position or the shape of a
volume.

• Some of the measurement equipment may be moved from a parking position into a data taking
position such as the two halves of the LHCb vertex detector. Whereas the position of the sensors
on each half are known to a very high precision, the position of the absolute position of the two
halves with respect to the full experiment may change after each movement.
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Changes to the volume placement do not only affect sensitive material i.e. detector components with
an active readout, but also passive material. The placement of any volume, passive or active, may
be corrected using DDAlign . The determination of the alignment parameters of passive components
however may be more difficult in the absence of located signals resulting e.g. from the traversal of a
track.
All effects resulting from such causes obviously need to be corrected in order to fully explore the
capabilities of the detection devices and to minimize measurement errors. In general any deviation
from the ideal position of a volume can be described by two elementary transformations:

• a translation

• a rotation around a pivot point.

giving a full transformation matrix of the form:

T = L ∗ P ∗R ∗ P−1 (1)

where

• T is the full transformation in 3D space containing the change to the exiting placement transfor-
mation. The existing placement is the placement transformation of the volume with respect to
the mother volume.

• L is a translation specifying the position change with respect to the mother volume.

• P ∗R∗P−1 describes a rotation around a pivot point specified int he mother volume’s coordinate
system.

• P is the translation vector from the mother volumes origin to the pivot point. The concept of a
pivot point does not introduce a new set of parameters. Pivot points only help to increase the
numerical precision.

Most of the changes do not require the full set of parameters. Very often the changes only require
the application of only a translation, only a rotation or both with a pivot point in the origin. These
simplifications are supported in the user interface described in Section 5.

2.2 Iterative Application of Global Alignments

Technically it is possible to apply global alignment procedures iteratively. This however id deprecated
and violates thread safety for the simple reason that the geometry in memory is altered. If applied, it
is duty of the client framework to ensure that during the change of global alignment no processing of
event data is ongoing. Hence, the procedure is described here only for completeness:

1. Create the ideal detector using an ideal geometry.

2. Apply a set of alignment parameters for a given time interval corresponding to the time a set of
particle collisions were collected in the experiment.

3. Process the set of collected particle collisions.

4. Reset the misaligned detector to the ideal.

5. Choose new event data input corresponding to another time interval and restart at item 2.

Graphically this use case is illustrated in Figure 4. In Section 5 the implementation to realize this use
case is described.

2.3 Procedures to Determine Global Alignment Parameters

Typically the determination of alignment parameters requires a starting point which is not necessarily
identical to the ideal position of a volume [3]. These volume positions are the result of a survey
measurement or the result of internal position measurements of a sub-volume within a sub-detector
e.g. on a measurement bench. In the following we call these parameters survey parameters. Survey
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Figure 4: The iterative application of alignment parameters as described in Section 2.2. For each
interval of validity ([T0, T1], [T2, T3], [T4, T5], ...) a seperate set of alignment constants is applied to
the ideal geometry. The two steps to reset the misaligned geometry back to the ideal geometry and to
re-apply a new set of alignment constants may be executed as often as necessary when processing data
from particle collisions.

parameters default to the ideal volume position if not supplied, alternatively, if set, to the provided
position. Survey parameters are, like the alignment parameters, provided in terms of changes with
respect to the ideal position and hence may be treated in a similar way.
The survey parameters are accessible to users through the interface offered by the DetElement objects.

2.4 Simulation of Non-Ideal Detector Geometries

It is a standard procedure in high energy physics to at least verify the measured detector response of
a given physics process in particle collisions with the expected simulated detector response. For most
purposes the simulation of an ideal detector is certainly is sufficient - though not describing the full
truth. Sometimes however, the detector geometry must be simulated with a geometry as close to the
known geometry as possible.
The simulation of such a geometry with applied alignment parameters can rather easily be realized
using using the DD4hep , DDAlign and the DDG4 frameworks:

• The ideal geometry is constructed using the standard procedures of DD4hep [1].

• Then the alignment parameters are applied and finally

• the corrected geometry is translated to Geant4 [6] using the DDG4 [4] package. All particle
collisions simulated with this translated geometry correspond to the modified geometry including
the geometry modifications.

There is a caveat though: The application of alignment parameters can easily create volume overlaps,
which are highly disliked by the Geant4 runtime. If the above described procedure is applied, it is
highly advised to check the resulting geometry for overlaps. Both, ROOT [5] and Geant4 [6] offer tools
to perform such tests.
To simulate distorted geometries clients should use the Global Alignment interface described in sec-
tion 2.5.
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2.5 The Global Alignment Interface

In this chapter will be documented how to use the Global Alignment interface of DDAlign . As already
mentioned in section 1, this interface allows to alter the layout of the geometry in memory. Use cases
are e.g. the simulation of non-ideal geometries.
Global alignment can be applied to detector elements using a specialized interface GlobalDetectorAlign-
ment 2. This interface provides the API to apply global changes to the geometry provided the presence
of alignment parameters as shown in the following code snippet:

/// First install the global alignment cache to build proper transactions1
Detector& detector = ...;2
GlobalAlignmentCache* cache = GlobalAlignmentCache::install(detector);3

4
/// Now create the tranaction context. There may only be one context present5
GlobalAlignmentStack::create();6
GlobalAlignmentStack& stack = GlobalAlignmentStack::get();7

8
/// Now we can push any number of global alignment entries to the stack:9
DetElement elt = ...detector element containing the volume to be re-aligned ...;10
string placement = "/full/path/to/the/volume/to/be/realigned";11
Alignments::Delta delta = ...;12
double ovl = allowed_overlap_in cm; // e.g. 0.001;13

14
// Create the new stack entry and insert it to the stack15
dd4hep_ptr<StackEntry> entry(new StackEntry(elt,placement,delta,ovl));16
stack->insert(entry);17

18
/// Finally we commit the stacked entries and release the stack.19
cache->commit(stack);20
GlobalAlignmentStack::get().release();21

Explanation:
Line

3
Install the GlobalAlignmentCache. Required to be done once. The object is registered to the
Detector instance and kept there.

3-8
The fact that the classes GlobalAlignmentCache and GlobalAlignmentStack are singletons is
not a fundamental issue. However, we want to call the XML parser (or other database sources)
iteratively and currently cannot chain a context (stack).

16-21 The created stacked entries are automatically released once the transaction is committed.

Please note, that this interface normally is not directly invoked by users, but rather called by plugin
mechanisms as the one described below capable of reading the global misalignments from XML.

2.5.1 Loading Global Geometrical Imperfections from XML

In this section we describe how to load global geometry imperfections and to apply them to an existing
geometry. Loading the XML file is done automatically using the standard XML loader plugin provided
by DD4hep . This mechanism is favoured and much simpler than programming the global misalignment
directly. This plugin is interfaced to the Detector instance and invoked from code as follows:

Detector& detector = ....;1
detector.fromXML("file:AlepTPC_alignment.xml");2

To fully exploit the capabilities it is important to understand the interpreted structure of the XML file
being processed. At the top level of the primary input file (i.e. the file given to the XML processor)
the following structure is expected:

2See the header file DDAlign/GlobalDetectorAlignment.h for details.
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<global_alignment>1
<!-- Open the alignment transaction -->2
<open_transaction/>3
<subdetectors> <!-- Container with the list of subdetectors to be processed. -->4

<detelement path="TPC" reset="true" reset_children="true">5
<!-- Move the entire TPC in the world volume -->6
<position="" x="30" y="30" z="80"/>7

8
<!-- Now add daughter detector elements -->9

10
<!-- Twist a bit the entire endcap by rotating it around the x and the y axis -->11
<detelement path="/world/TPC/TPC_SideA" check_overlaps="false">12

<position x="0" y="0" z="0"/>13
<rotation x="-0.2" y="-0.2" z="0"/>14
<!-- Apply corrections of type Translation*Rotation to a single sector15
<detelement path="TPC_SideA_sector02" check_overlaps="true">16
<position x="0" y="0" z="0"/>17
<rotation x="0.5" y="0.1" z="0.2"/>18

</detelement>19
</detelement>20

21
<!-- And the full shooting match of transformations for this sector -->22
<detelement path="TPC_SideA/TPC_SideA_sector03" check_overlaps="true">23

<position x="0" y="0" z="290.0*mm"/>24
<rotation x="0" y="pi/2" z="0"/>25
<pivot x="0" y="0" z="100"/>26

</detelement>27
28

....29
30

<!-- Include alignment files to be processed in the context of the "TPC" DetElement31
<include ref="file-name"/>32

33
</detElement>34

</subdetectors>35
36

<!-- Include alignment files to be processed at the top level context -->37
<include ref="file-name"/>38

39
<!-- Close the alignment transaction -->40
<close_transaction/>41

</global_alignment>42

The structure of the alignment file explained quickly:
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Line

1
The root tag for the primary alignment file is <alignment/>. The primary tag name is manda-
tory and actually is used to invoke the correct interpreter.

2,41 Trigger the alignment transaction by specifying the transaction tags in the main XML file.

4
Defintion of the set of subdetectors to be processed. A valid alias for this directove is
detelements.

5

The first subdetector: TPC. The subdetector tag is detelement Each detelement may re-
cursively contain other detelement tags. as they were defined in the DetElement hierarchy.
Internal detelement elements are processed in the context of the outer element i.e. pathes may
be specified relative to the parent or as absolute pathes with respect to the world (starting with
a ’/’).

7 Global movement of the TPC

12-20 Realignment entry for the TPC endcap A named TPC SideA

16-19
Realignment entry for sector named TPC SideA sector02 of the TPC endcap A. Here the sector
is specified directly as a daughter of the endcap. The name of the DetElement is relative to
the parent.

23-27
Realignment entry for sector named TPC SideA sector03 of the TPC endcap A containing a
full transformation: Translation ∗ Pivot ∗Rotation ∗ Pivot−1

32
Optionally detelement elements may include other alignment files specifying lower volume
levels. These files are interpreted in the context of the calling detector element.

38
Optionally the subdetector alignment constants may be fragmented into several files, which can
be loaded using the include directive. Each file could for example describe one single detector.

The specification of any transformation element is optional:

• The absence of a translation implies the origin (0,0,0)

• The absence of a pivot point implies the origin (0,0,0)

• The absence of a rotation implies the identity rotation. Any supplied pivot point in this case is
ignored.

The absence of a transformation element is absolutely legal and does not issue any warning or error.
All transformations describe the change of placement with respect to the coordinate system of the
closest mother-volume in the volume hierarchy, i.e. translations, rotations and pivot points are local
to the mother coordinate system.
Included files may directly start with the root tags subdetectors, detelements or detelement and
may recursively include other files. Except for the top level these files are processed in the calling
context. The result of this procedure is shown in Figure 5.

2.5.2 Export Geometrical Imperfections to XML

In this section we describe how to export geometry imperfections to an XML file. A small helper class
AlignmentWriter achieves this task as shown in the snippet:

Detector& detector = ....;1
DetElement top = detector.world();2
if ( top.isValid() ) {3
AlignmentWriter wr(detector);4
return wr.write(top,output,enable\_transactions);5

}6

This code will dump all alignment constants contained in the DetElement hierarchy of top to the
output file output. The optional argument enable transactions (default: true) will add the tags
<open transaction/> and <close transaction/> to the output file. The output file conforms to the
specifications described in Section ?? and may later be imported by another process.
FIXME: This chapter sort of still has to be written/completed!!!!
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Figure 5: The ALEPH TPC after the import of the alignment file. Note, that the geometry in memory
changed. The original geometry desciption is no longer present.

3 Up to here the manual should be pretty much correct.
Everything below is at least questionable.

4 Local Alignment

bla bla bla
Generally such a behavior can be achieved in two ways. The usage strongly depends on the use-case
required by the client:

1. either the ideal geometry in memory is changed directly to reflect the measured geometry. This
approach has the disadvantage, that all measurement points on a daughter volume can only be
transformed to the global coordinate system using one single transformation. Time-dependent
changes of these transformations cannot be modeled. Hence, for multi-threaded systems this
approach is of limited use. However, this is the perfect approach to simulate distorted geometries.
This approach is naturally supported by the ROOT geometry toolkit.

2. The second possibility is to not modify the ideal geometry in memory, but to provide instead
transformations to move measured coordinates to their correct place in space. This approach
allows to keep several - also time-dependent - transformations in memory. Ideal to support
multi-threaded data processing frameworks, which become more and more popular.

DDAlign supports both possibilities as will be described in the following sections.
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5 The Local Alignment Interface

DDAlign implements a machinery to apply and access the alignment parameters describing the dif-
ference between an ideal detector given by an ideal geometry and the geometry of the actually built
assembly in real life. To ease its usage for the clients and to shield clients from the internals when
actually dealing with realigned geometries, a set of helper classes was designed. The access to the
alignment parameters in read-only mode was separated from the import or export thereof.
As a basic concept within DD4hep any sizable detector component can be realigned. Sizable as a rule
of thumb is anything, which is manufactured as an individual piece and which you may ”hold in your
hands”. Such objects are also described by a detector element of type DetElement. An example is
e.g. a single silicon wafer of a tracking device or the entire tracking detector itself. The access to
the alignment parameters is possible from each DetElement instance as described in Section 5.1. The
interface assumes ”planar” alignment parameters i.e. the shape of a given volume does not change 3.
As mentioned earlier, in the local alignment DDAlign allowed to retrieve time dependent alignment
parameters and transformations. This time dependency was relatively easy achieved by re-using the
conditions mechanism from DDCond . In this spirit Alignment transformations are practically no dif-
ferent from conditions like temperatures, pressures etc. To access the alignment conditions clearly
not only some identifier must be provided, but also a interval of validity, which defines from which
point in the past to which point in the future the required alignment constants may be applied.
Please be aware that the extensive use of misalignments is highly memory consuming.

5.1 Access to Alignment Parameters from the Detector Element

The DetAlign class as shown in Figure 1 gives the user access to the alignment structure of type
Alignment as illustrated in the following example:

ConditionsSlice slice = ... // Prepared slice containing all condiitons1
DetElement wafer_det = ... // Valid handle to a detector element2
DetAlign wafer = wafer_det;3
Alignment wafer_alignment = wafer.get();4
if ( wafer_alignment.isValid() ) {5

// This wafer’s placement differs from the ideal geometry when6
// alignment parameters are present.7

8
// Access the misalignment transformation with respect to the parent volume:9
Transform3D tr = wafer_alignment.toMotherDelta();10

}11

The access to details of an invalid alignment object results in a runtime exception. The following calls
allow clients to access alignment information from the DetElement structure:

/// Access to the actual alignment information1
Alignment alignment() const;2

3
/// Access to the survey alignment information4
Alignment surveyAlignment() const;5

The call to alignment() return the parameters applied to the the existing ideal geometry. The call
surveyAlignment() returns optional constants used to perform numerical calculations as described in
section 2.3.
All functionality of the DetElement, which depends on applied alignment parameters are automatically
updated in the event of changes. These are typically the geometry transformations with respect to the
mother- and the world volume:

3This is a restriction to the possibilities provided by the ROOT implemetation [5] based on experience [3]. If at a
later time the need arises the provided alignment interface may be extended to support shape changes.
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/// Create cached matrix to transform to world coordinates1
const TGeoHMatrix& worldTransformation() const;2

3
/// Create cached matrix to transform to parent coordinates4
const TGeoHMatrix& parentTransformation() const;5

6
/// Transformation from local coordinates of the placed volume to the world system7
bool localToWorld(const Position& local, Position& global) const;8

9
/// Transformation from local coordinates of the placed volume to the parent system10
bool localToParent(const Position& local, Position& parent) const;11

12
/// Transformation from world coordinates of the local placed volume coordinates13
bool worldToLocal(const Position& global, Position& local) const;14

15
/// Transformation from world coordinates of the local placed volume coordinates16
bool parentToLocal(const Position& parent, Position& local) const;17

it is worth noting that the update of cached information is performed by the DetElement objects, other
user defined cached information is not updated. To update user caches it is mandatory to provide a
user defined update callback to the DetElement:

template <typename Q, typename T>1
void callAtUpdate(unsigned int type, Q* pointer,2

void (T::*pmf)(unsigned long typ, DetElement& det, void* opt_par)) const;3

The interface of the Alignment structure to access detector alignment parameters is as follows (see
also the corresponding header file DD4hep/Alignment.h):

/// Number of nodes in this branch (=depth of the placement hierarchy from the top level volume)1
int numNodes() const;2

3
/// Access the placement of this node4
PlacedVolume placement() const;5

6
/// Access the placement of the mother of this node7
PlacedVolume motherPlacement(int level_up = 1) const;8

9
/// Access the placement of a node in the chain of placements for this branch10
PlacedVolume nodePlacement(int level=-1) const;11

12
/// Access the currently applied alignment/placement matrix with respect to the world13
Transform3D toGlobal(int level=-1) const;14

15
/// Transform a point from local coordinates of a given level to global coordinates16
Position toGlobal(const Position& localPoint, int level=-1) const;17

18
/// Transform a point from global coordinates to local coordinates of a given level19
Position globalToLocal(const Position& globalPoint, int level=-1) const;20

21
/// Access the currently applied alignment/placement matrix with respect to mother volume22
Transform3D toMother(int level=-1) const;23

24
/// Access the currently applied alignment/placement matrix (mother to daughter)25
Transform3D nominal() const;26

27
/// Access the currently applied correction matrix (delta) (mother to daughter)28
Transform3D delta() const;29

DDAlign User Manual 12



Advanced European Infrastructures for Detectors at Accelerators

30
/// Access the inverse of the currently applied correction matrix (delta) (mother to daughter)31
Transform3D invDelta() const;32

• The calls in line 3-8 allow access to the relative position of the nth. element in the alignment
stack with respect to its next level parent. Element numNodes() − 1 denotes the lowest level
and element 0 is the world volume. The default argument (−1) addresses the lowest placement
in the hierarchy.

• Calls in line 9-12 allow to access/execute transformations from a given level in the placement
hierarchy to coordinates in the top level volume (world).

• The call in line 14 allows to transform a global coordinate to the local coordinate system in a
given level of the hierarchy.

• The call toMother in line 16 returns the local transformation of the node at a given level to the
mother’s coordinate system.

• The calls in line 17-20 give access to the nominal placement matrix of the realigned node with
respect to the parent volume and the changes thereof.

Besides these convenience calls the full interface to the class TGeoPhysicalNode, which implements in
the ROOT geometry package alignment changes, is accessible from the Alignment handle using the
overloaded operator− > (). Further documentation is available directly from the ROOT site .

5.2 Manipulation of Alignment Parameters

There are multiple possibilities to apply alignment parameters:

• The pedestrian way ”by hand” using C++ as described in Subsection 5.2.1

• Loading a whole set of misalignment constants from XML, the ”poor man’s” database. This
mechanism is described in Subsection ??

• Loading a whole set of misalignment constants from a database. This possibility depends heavily
on the database and its schema used. A typical use case is to load misalignment constants
depending on the experiment conditions at the time the event data were collected. DDAlign does
not provide an implementation. This possibility here is only mentioned for completeness and will
be subject to further developments to support conditions in DD4hep .

5.2.1 Manipulation of Alignment Parameters for Pedestrians using C++

In this section we describe how to apply geometry imperfections to an existing detector geometry
in memory using C++. To apply misalignment to an existing geometry two classes are collaborating,
the AlignmentCache attached to the geometry container Detector and a temporary structure the
AlignmentStack. The AlignmentCache allows to access all existing alignment entries based on their
subdetector. The AlignmentStack may exist in exactly one instance and is used to insert a consistent
set of alignment entries. Consistency is important because changes may occur at any hierarchical level
and internal transformation caches of the ROOT geometry package must be revalidated for all branches
containing a higher level node. For this reason it is highly advisable to apply realignment
constants for a complete subdetector. Note that this restriction is not imposed, in principle a
consistent set of misalignments may be applied at any level of the geometry hierarchy.
Though the application of alignment is much simpler using XML files, the following description should
give an insight on the mechanisms used behind the scene and to understand the concept.
Any manipulations are transaction based must be embraced by the following two calls opening and
closing a transaction:

// Required include file(s)1
#include "DDAlign/AlignmentCache.h"2
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3
Detector& detector = ....;4
AlignmentCache* cache = detector.extension<Geometry::AlignmentCache>();5

6
// First things first: open the transaction.7
cache->openTransaction();8

9
// Prepare the entry containing the alignment data10
AlignmentStack::StackEntry* entry = .....;11
//.... and add the element to the AlignmentStack .....12
AlignmentStack::insert(entry);13

14
// Finally close the transaction. At this moment the changes are applied.15
cache->closeTransaction();16

In the following we describe the mechanism to create and prepare the StackEntry instances of the
above code snippet. The calls to open and close the alignment transaction do not have to be in the
same code fragment where also the alignment entries are prepared. However, all changes are only
applied when the transaction is closed. The alignment entries do not necessarily have to be prepared
in the sequence of the hierarchy they should be applied, internally the entries are re-ordered and follow
the geometry hierarchy top to bottom i.e. mother volumes are always re-aligned before the daughters
are re-aligned.
The StackEntry instances carry all information to apply the re-alignment of a given volume. This
information contains:

• The transformation matrix describing the positional change of the volume with respect to its
mother volume.

• The placement path of the volume to be realigned.

• A flag to reset the volume to its ideal position before the change is applied.

• A flag to also reset all daughter volumes to their ideal position before the change is applied.

• A flag to check for overlaps after the application of the change and

• the actual precision used to perform this check.

The ROOT::Math library provides several ways to construct the required 3D transformation as described
in Section 2.1:

// Required include file(s)1
#include "DD4hep/Objects.h"2

3
Position trans(x_translation, y_translation, z_translation);4
RotationZYX rot (z_angle, y_angle, x_angle);5
Translation3D pivot(x_pivot, y_pivot, z_pivot);6

7
Transform3D trafo;8
/// Construct a 3D transformation for a translation and a rotation around a pivot point:9
trafo = Transform3D(Translation3D(trans)*pivot*rot*(pivot.Inverse()));10

11
/// Construct a 3D transformation for a translation and a rotation around the origin12
trafo = Transform3D(rot,pos);13

14
/// Construct a 3D transformation for a rotation around a pivot point15
trafo = Transform3D(piv*rot*(piv.Inverse()));16

17
/// Construct a 3D transformation for a rotation around the origin18
trafo = Transform3D(rot);19

20
/// Construct a 3D transformation for simple translation21
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trafo = Transform3D(pos);22
23

The following code snippet shows how to extract this information from the DetElement and prepare
such a StackEntry instance:

// Required include file(s)1
#include "DDAlign/AlignmentStack.h"2

3
// Prepare the entry containing the alignment data4
typedef AlignmentStack::StackEntry Entry;5
/// Detector element to be realigned6
DetElement element = ...;7
/// The transformation describing the relative change with respect to the mother volume8
Transform3D trafo = ...;9
/// Instantiate a new alignment entry10
Entry* entry = new Entry(element);11
entry->setTransformation(trafo) // Apply the transformation matrix12

.applyReset(/* argument default: true */) // Set the reset flag13

.applyResetChildren(/* argument default: true */) // Set the daughter reset flag14

.checkOverlaps(/* argument default: true */) // Set flag to check overlaps15

.overlapPrecision(0.001/mm); // With this precision in mm16
17

/// Now add the entry to the alignment stack:18
AlignmentStack::insert(entry);19

The constructor will automatically determine the volumes placement path from the DetElement. Then
the transformation is applied and the flags to reset the volume, its children and to trigger the overlap
checks with the given precision.
When passing the entry to the AlignmentStack the AlignmentStack takes ownership and subsequently
the entry is deleted after being applied to the geometry. For further shortcuts in the calling sequence
please consult the AlignmentStack header file.
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