

April 16^{th.}, 2015

DDG4

A Simulation Framework Based on DD4hep^(a) and Geant4

M.Frank⁽¹⁾, F.Gaede^(1,2), N.Nikiforou⁽¹⁾, M.Petric⁽¹⁾, A.Sailer⁽¹⁾ ⁽¹⁾CERN ⁽²⁾ Desy

^(a) DD4hep: A General Purpose Detector Description Toolkit, CHEP2013, Amsterdam, NL

CHEP2015 Okinawa/Japan Markus Frank / CERN

- Motivation, goals and the grand picture
 => Introduction / Reminders
- Concepts and Design
- Side remarks: Users and extensions
- Summary

AIDA

Motivation and Goal

DD4hep: a detector description

- For the full experiment life cycle
 - concept development, optimization, construction and operation
 - 'Anticipate the unforeseen'
- Consistent description, single source of information
 - Support for simulation, reconstruction, analysis
- Full description, including
 - Geometry, readout, alignment, calibration etc.

DDG4⁽¹⁾: Simulation support for DD4hep

- Require minimal user effort

⁽¹⁾AIDA-2020 project/Horizon-2020: WP3 Advanced Software

What is Detector Description ?

- Description of a tree-like hierarchy of 'detector elements'
 - Subdetectors or parts of subdetectors
- Detector Element describes
 - Geometry

AIDA

- Environmental conditons
- Properties required to process event data

April <u>16th 2015</u>

 Optionally: experiment, sub-detector or activity specific data

DD4Hep - The Big Picture

April 16th 2015

AIDA

CÉRN

- Motivation and Goals
- Concepts and Design
 - ... life is a wish-list
 - The design and some illustration examples
- Side remarks: Users and extensions
- Summary

Simulation: The Wish

- Simulation = Geometry + Detector response + Physics
- Minimalistic approach
 - Ideally: configuration without extra (C++) user code
- DDG4 Wish:
 - Bootstrap Geant4 from DD4hep memory model
 - Configure the simulation application
 - Run...

AIDA

Configuring Simulation Application: Concept

- Walk through the geometry and convert on the fly from ROOT to Geant4
- Hook into the Geant4 provided entry points
- Instantiate detector response (sensitive detectors) from plugin palette
- Instantiate physics list, -constructors and -processes from plugin palette
- Run...

Geant4 Provided Hooks

[and what we want to do inside]

Main issue: flexible configuration

Example of an Action Sequence: Event Overlay with Features

AIDA

Another Example: MC Truth Handling

Design Considerations

- External configuration
 - => requires Plugin mechanism
 => requires Property mechanism
 to configure plugin instances
 - => Allows to naturally support configuration using XML, python or ROOT-AClick
- Interactivity in Geant4

April 16th.2015

- => For all plugins export properties and selected member functions
- Formalization and external setup of physics

=> formalize construction of physics lists, physics constructors and particle type constructors in Geant4

Simple Basic Block for all Entities

- Geant4Context
 - Access Geant4 internals and Geometry
- PropertyManager
 - External configuration [similar to e.g. Gaudi]
- Geant4UIMessenger

April 16th 2015

AIDA

Interactivity from the Geant4 prompt

Construct Specialized Components with Geant4Action as Base Class:

- Configurable physics actions (physics list)
- Configurable action sequences to handle sensitive detectors
- Configurable action sequences to handle
 - Events (e.g. event output) => Event action
 - Tracks => Tracking action
 - Simulation step => Stepping action
 - ... if the user application wants to interact with these
- And of course also provide the modules to populate these sequences!

Simulation: Plugin Palettes

- Palette of sensitive detectors
 - Generic sensitive detectors for trackers & calorimeters
 - Adopt generic designs for other detector 'classes'
- Palette of IO handlers
 - Input: Icio, StdHep(Icio), HepEvt (ascii), HepMC(ascii)
 - Output: Root, Icio

- MC truth handling w/o record reduction
- Physics lists, Physics/particle constructors etc.
 - Wrapped factory plugins directly taken from Geant4
 - Users extend physics list (e.g. QGSP)

- Motivation and Goals
- Concepts and Design
- Side remarks: Users and extensions
- Summary

Documentation

- http://aidasoft.web.cern.ch/DD4hep
- https://svnsrv.desy.de/basic/aidasoft/DD4hep/trunk
- Doxygen documentation
- In svn trunk/doc:
 - DD4hep manual, ~ 40 pages
 - DDG4 manual, ~40 pages
 First issues, to be completed
 - Living documents

Saida Aida DD4he	utivitiens for Detection at Accelerators	
A Detector Descri for High Energ Experime Milwik CHEX HIL Grees 3.		A Annual Exercise Medications
	A Simulation Toolkit for High Energy Physics Experiments using Geant4 and the DD4hep Geometry Description	

Known Toolkit Users

Users are mandatory for feedback to avoid developments in thin air (i.e. purely academic)

• 11 D:	E Gaede et al. ported complete	DD4hep	DDG4
	Mokka model ILD_o1_v05 ⁽¹⁾	X	X
• CLICdp:	starting new design after CDR ⁽¹⁾	X	x
• FCC-eh:	P. Kostka et al.	Х	X
• FCC-hh:	starting, A.Salzburger et al.	X	
• LHCb:	investigations by technical student	Х	

⁽¹⁾ See A.Sailer's poster in Session B: "Integration of DD4hep in the Linear Collider Software Framework" Booth 6, Wednesday + Thursday https://indico.cern.ch/event/304944/session/10/contribution/290

April 16th.2015

To Keep Us Off the Street ...

- Possible improvements of DDG4
 - Support for fast and parametrized simulation
 - Speed-up by avoiding full Geant4 machinery
 - Heterogenous simulation

- Full, fast and parametrized simulation depending on sensitive region
- Take action on demand, hope for external contributions
- DDG4 is the 2^{nd.} episode of the DD saga
 - DD4hep, DDG4, DDRec, DDAlign and DDCond (to come)

Summary and Outlook

- The DD4hep toolkit (+extensions) is getting accepted:
 => Validation by users has started
- Simulation toolkit DDG4 being validated
 - Toolkit to simulate particle collisions in HEP detectors with minimal effort: simple, easy, flexible
 - DDG4 can host user plugins: extensible
- Basic DD4hep detector palette established
 - Hope for further user contributions

- Hope to offer 'complete' sensitive detector palette
- Hope for contributions to complete the plugin suite to cover all simulation needs (I/O, MC truth, etc)

Questions and Answers

CERN

Backup slides

Implementation: Geometry

April 16th 2015

AIDA

CÉRN

Geant4 Interactivity

Idle> ls /ddq4 Command directory path : /ddq4/

Guidance : Control for all named Geant4 actions

Sub-directories : /dda4/RunInit/ Control hierarchy for Geant4 action:RunInit /ddg4/RunAction/ Control hierarchy for Geant4 action:RunAction /ddg4/EventAction/ Control hierarchy for Geant4 action: EventAction /dda4/LcioOutput/ Control hierarchy for Geant4 action:LcioOutput

April 16th 2015

Sub-directories : Commands :

show * Show all properties of Geant4 component:UserParticleHandler Control * Property item of type bool MinimalKineticEnergy * Property item of type double Name * Property item of type std::string OutputLevel * Property item of type int TrackingVolume_Rmax * Property item of type double TrackingVolume_Zmax * Property item of type double name * Property item of type std::string Idle> /ddg4/UserParticleHandler/TrackingVolume Rmax Geant4UIMessenger: +++ UserParticleHandler> Unchanged property value TrackingVolume_Rmax = 1265. Idle> /ddg4/UserParticleHandler/TrackingVolume Rmax 1.3*m Geant4UIMessenger: +++ UserParticleHandler> Setting property value TrackingVolume Rmax = 1.3*m native:1300. Idle> /ddg4/UserParticleHandler/TrackingVolume_Rmax Geant4UIMessenger: +++ UserParticleHandler> Unchanged property value TrackingVolume_Rmax = 1300. Idle>

Geant4 interactivity interfaced to every action object

Enabled on request

Actions have properties (similar to Gaudi)

- Interrogate properties
- Modify properies

Configure DDG4 Application with python

```
kernel = DDG4.Kernel()
lcdd = kernel.lcdd()
kernel.loadGeometry("file:"+install_dir+"/DDDet
kernel.loadXML("file:"+example_dir+"/DDG4_field
DDG4.importConstants(lcdd)
```

```
Generation of isotrope tracks of a given multip
. . . .
# First particle generator: pi+
gen = DDG4.GeneratorAction(kernel,
          "Geant4IsotropeGenerator/IsotropPi+")
gen.Particle = 'pi+'
gen.Energy = 100 * \text{GeV}
gen.Multiplicity = 2
gen.Mask = 1
kernel.generatorAction().adopt(gen)
# Install vertex smearing for this interaction
gen = DDG4.GeneratorAction(kernel,
          "Geant4InteractionVertexSmear/SmearPi
gen.Mask = 1
gen.Offset = (20*mm, 10*mm, 10*mm, 0*ns)
gen.Sigma = (4*mm, 1*mm, 1*mm, 0*ns)
kernel.generatorAction().adopt(gen)
```

- Python configuration snippets
 - Loading geometry
 - Configuring actions
 - Steer Geant4 until it's prompt/batch
- C++ config ~ same
- Alternative: xml Load xml with lcdd

Configure DDG4 Application from XML

<sequences></sequences>	Geant4 event acti	on setup		
<sequence name="Geant4EventActionSequence/EventAction"></sequence>				
<properties< td=""><td>Control="true"/></td><td></td></properties<>	Control="true"/>			
<action name="Geant40utput2R00T/Root0utput"></action>				
<propertie< td=""><td>s Control="true" Output="simple"</td><td>ple.root"/></td></propertie<>	s Control="true" Output="simple"	ple.root"/>		
	Geant4 generator	action setup		
<sequence name<="" td=""><td>="Geant4GeneratorActionSequer</td><td>nce/GeneratorAction"></td></sequence>	="Geant4GeneratorActionSequer	nce/GeneratorAction">		
<action name="Geant4ParticleGun/Gun"></action>				
<propertie< td=""><td>s /></td><td></td></propertie<>	s />			
	Sensitive detecto	<u>r setup</u>		
<sequence sd="SiVertexBarrel" type="Geant4SensDetActionSequence"></sequence>				
<properties control="true"></properties>				
<filter name="GeantinoRejector"></filter>				
<filter name="EnergyDepositMinimumCut"></filter>				
<action name<="" td=""><td>="Geant4SimpleTrackerAction/</td><td>SiVertexBarrelHandler"></td></action>	="Geant4SimpleTrackerAction/	SiVertexBarrelHandler">		
<propertie< td=""><td>s Control="true"/></td><td></td></propertie<>	s Control="true"/>			
	Instance type from nalette	Instance name for reference		
	molance type nom palette			

CERN

Complete Mokka model ILD_o1_v05 ported (F.Gaede, L.Shaojun)

- VXD, FTD, SIT, TPC, SET, beam pipe
- Ecal, Hcal, Yoke, Beamcal, Lcal, LHcal
- two generic SensitiveDetectors

CHEP2015 Okinawa/Japan Markus Frank / CERN