DD4hep

Detector Description Toolkit

DD4hep work status, components and usage

1

AIDA

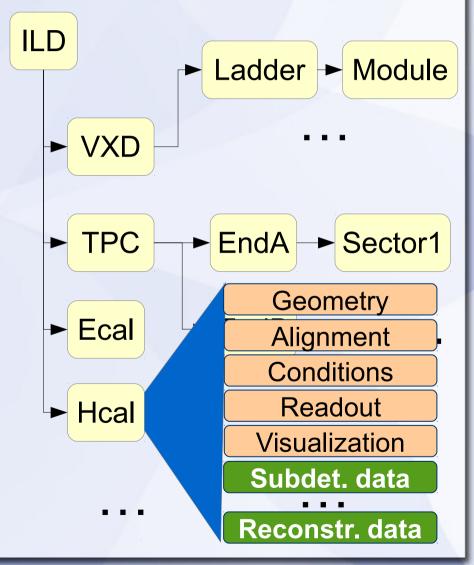
Motivation and Goal

- Develop a detector description (*)
 - For the full experiment life cycle
 - detector concept development, optimization
 - detector construction and operation
 - 'Anticipate the unforeseen'
 - Consistent description, single source of information, which supports
 - simulation, reconstruction, analysis
 - Full description, including
 - Geometry, readout, alignment, calibration etc.
- Driven by lazyness of users
 - Get most out of it with minimal efforts
 - (*) DD4hep is a sub-package of AIDA2020 WP3

Foreword: About DD4hep & Co

 It is an effort of very few people with a simple and comprehensive vision:

Detector description for the lazy ones ... get it all with minimal effort and no technical restrictions


- We welcome new collaborators / users and provide support
 - Suggestions are welcome but not under pressure
 - Contributions are even more welcome
 - Users must act responsible ... in design
 and when in trouble:
 => Feed back proper analysis to fix problem
 - => "It doesn't like me and answers SEGV"

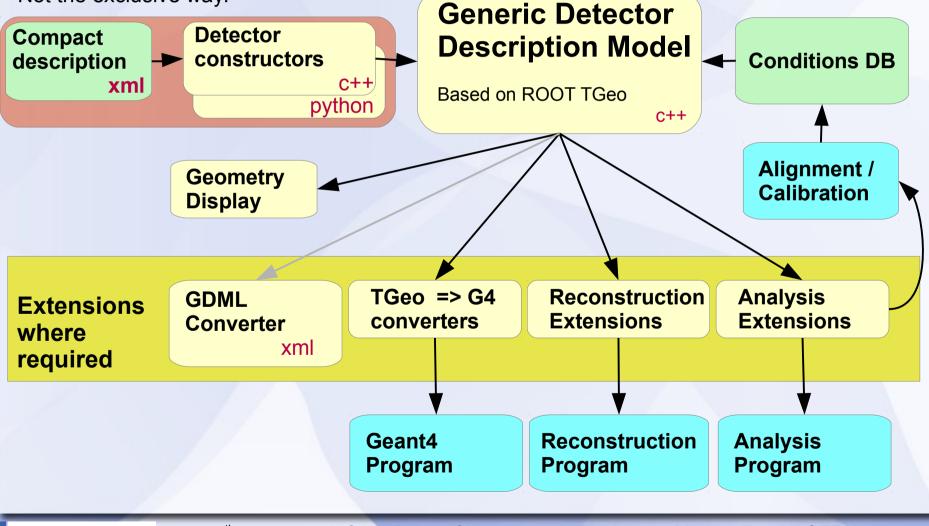
blessing

and curse

What is Detector Description ?

- Description of a tree-like hierarchy of 'detector elements'
 - Subdetectors or parts of subdetectors
- Detector Element describes
 - Geometry
 - Environmental conditons
 - Properties required to process event data
 - Optionally: experiment, sub-detector or activity specific data

AIDA

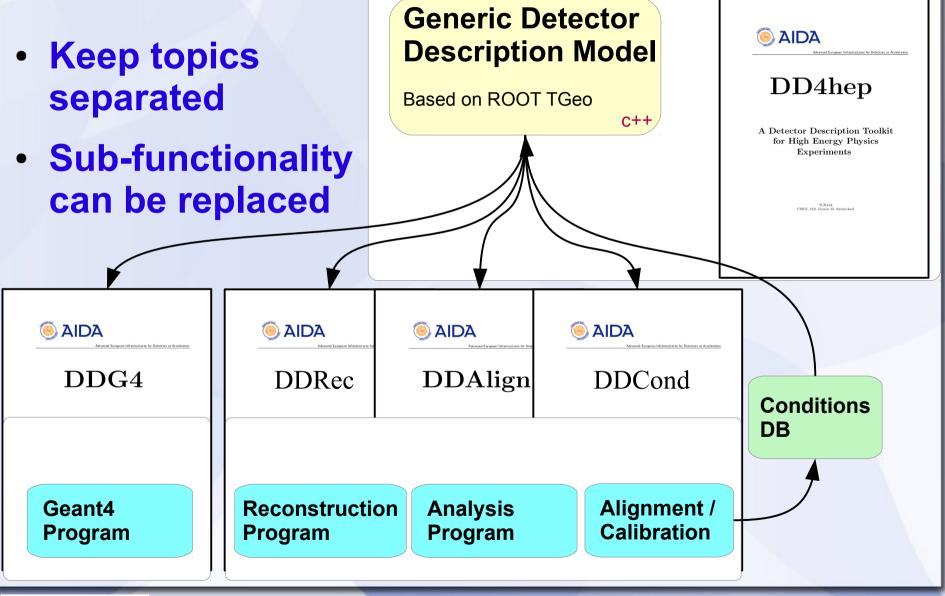

DD4Hep - The Big Picture

Note:

CÉRN

AIDA

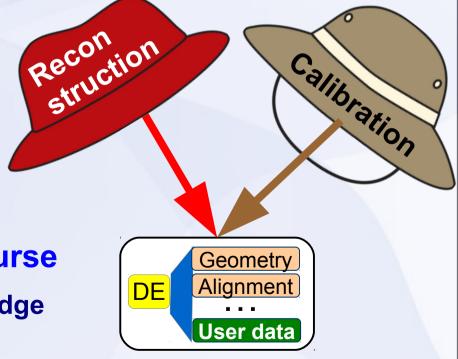
One way to populate DD4hep (plugin based) Not the exclusive way.


Saga in 5 Episodes: Sub-packages

- DD4hep basics/core •
- **DDG4 Simulation using Geant4** •
- **DDRec Reconstruction supp.** • - Driven by LC community
- **DDAlign Alignment support** •
- **DDCond Detector conditions** •

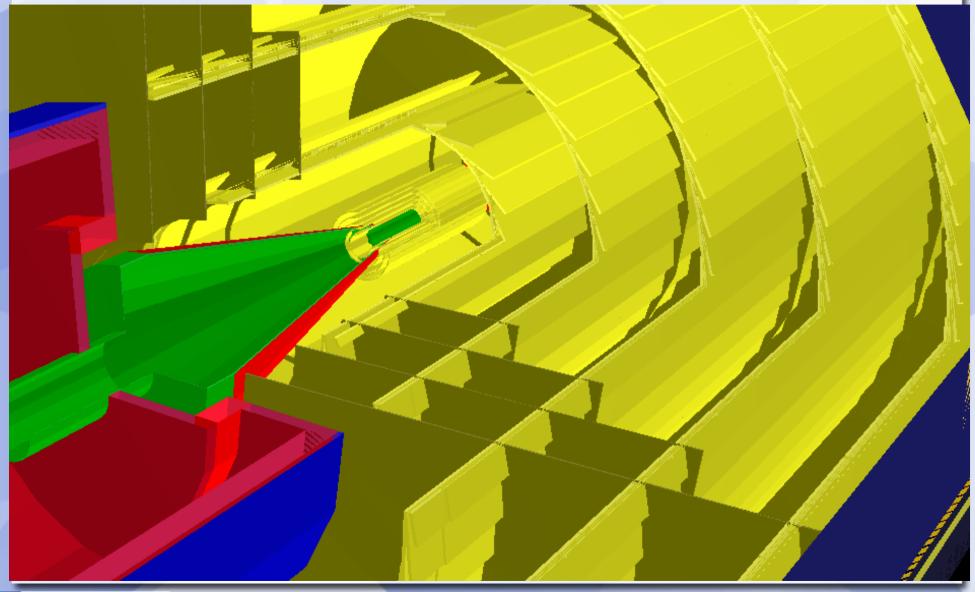
	1					
		Sector AIDA	regean infastructures for Deter	ton at Acolesion		
	13	A Detector Desc for High Ener Experin	ription Too			
AIDA Anneel European Infranctions for Detection at Academian						
DDRec			DDCond			
	Contraction for AIDA		Chinese si Analeseen			at Accelerators
		DDG4	DDAlign			
		A Simulation Toolkit fo (igh Energy Physics Exper using Geant4 and the DD4hep Geometry Descrip	iments 9	Toolkit		m
M.Funk CERN, 1211 Gaussi 23, Solitaniand				M.Pashk CERN, 1211 Gauren 23, Switzerland		
s-de-Bogis Markus Frank / CERN						

Functional Separation: Ensure Flexibility



AIDA

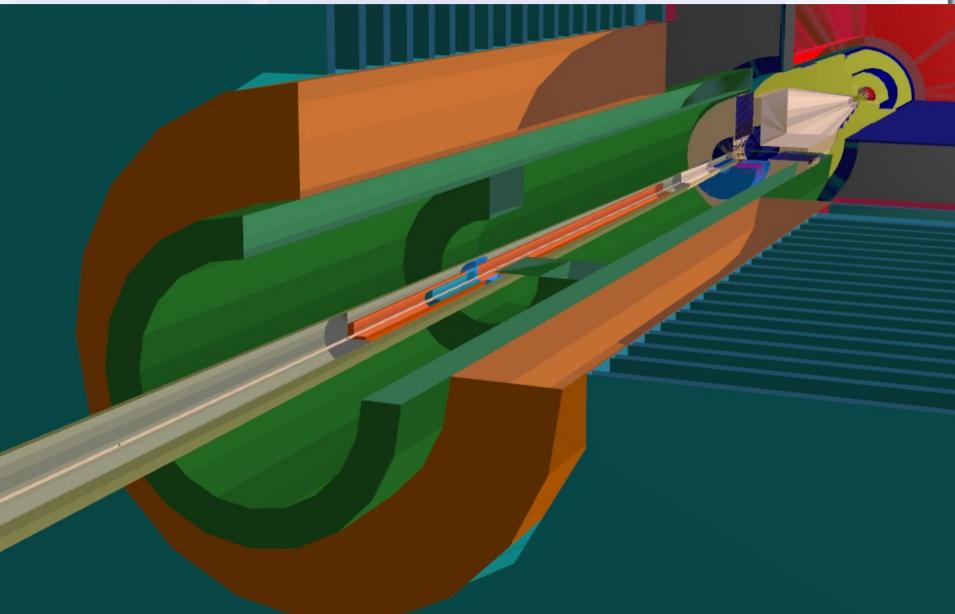
Views & Extensions: Users Customize Functionality DD4hep is based on handles (smart pointers)


- Rarely deal with data directly
- Possibility of many views based on the same DE data
 - Same 'data' associated to different 'behaviors'
 - All views are consistent and creation is efficient: pointer-copy
 - Add data according to needs
- Be prudent: blessing or curse
 - User data: common knowledge
 - No one fits it all solution

DD4hep Core

- Handles all functionality of detector elements
- Basically stable
 - Bug fixes, enhancements
- Objects are fully reflective
 - C++ dictionary defined
 - Intrinsic support for cross-language development
- Reflection supports interactivity
 - CINT command prompt
 - Python using 'cppyy'

DD4hep Core: Screenshot ILC/SiD

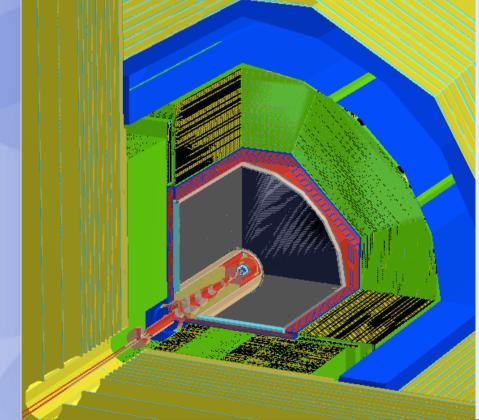


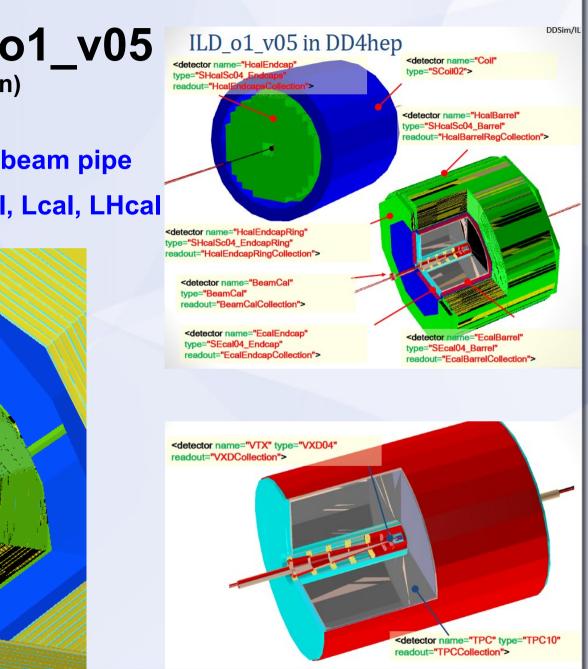
AIDA

DD4hep Core: Screenshot ILC/Tesla

vxd03

DD4hep Core: Screenshot ILC/Tesla




CERN

ILD: Model ILD_o1_v05

(F.Gaede, L.Shaojun)

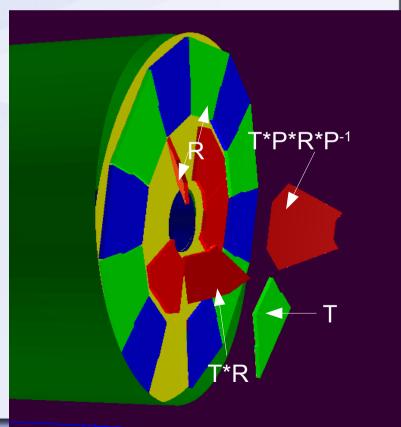
- VXD, FTD, SIT, TPC, SET, beam pipe
- Ecal, Hcal, Yoke, Beamcal, Lcal, LHcal

CÉRN

LHeC Workshop Chavannes-de-Bogis

Markus Frank / CERN

Simulation: DDG4


- **Simulation = Geometry + Detector response + Physics**
- Concept: Formalization of Geant4
 - Automatic conversion from ROOT to Geant4
 - Instantiate objects palette: Physics list, -constructors, sens. detectors
 - Start simulating
- Basic sensitive detectors implemented and in use
- Status: implemented and under validation
- No extra (C++) user code necessary
 - But not inhibited e.g. sophisticated sensitive detectors
- Flexible configuration with XML, python or Cint

DDG4: Upcoming Developments

- Support for fast and parametrized simulation
 - Speed-up by avoiding full Geant4 machinery
 - Workshop @ CERN this autumn
- Multi-threading support
 - According to Geant4 rules
 - Multiple instances of elements handling actions during energy deposits while tracking
- Revisit integration into experiment frameworks
 - See also talk from B.Hegner
- Move to ROOT 6

DDAlign: Detector Alignment

- Fundamental functionality to interpret event data in the real world
 - Selling argument for existing experiments
 - Must handle imperfections
 - Geometry => (Mis)Alignment
 - Anomalous conditions
 - Pressures, temperatures
 => Gains, refractive indices
 => Contractions, expansions
 - Basic functionality present
 - No connection to persistency

DDAlign: Detector Alignment

• Fu Please Note:

DDAlign does not provide algorithms
 to determine alignment constants and
 never will ^(*)

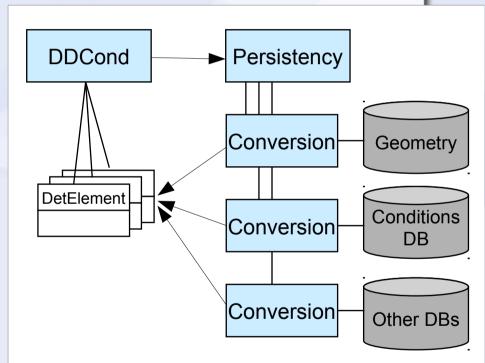
in

?*P⁻¹

Т

DDAlign supports hosting the results of the algorithms and to apply alignment constants to the geometry

(*) Alignment procedures investigated by another sub-project of WP3


CERN

DDCond: Conditions Data Tales of thin air ...

- Time dependent data necessary to process the detector response [of particle collisions]
- Conditions data support means to Provide access to a consistent set of values according to a given time
 - Fuzzy definition of a "consistent set" typically referred to as "interval of validity"
 - May be time interval, run number, named period, ...
 - Configurable and extensible
- Data typically stored in a database

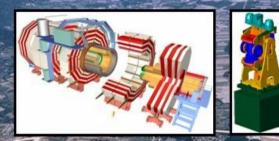
DDCond: Workplan The only thing that exists ...

- The transient implementation
 - Flexible definition and handling of intervals of validity ==> Key point
- Persistent implementation
 - Define interface/ABC
 - Proof of concept using one XML, SQLite, Oracle, ...

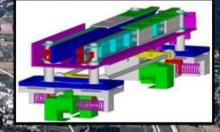
Toolkit Users

Users are mandatory for feedback to avoid developments in thin air (i.e. purely academic)

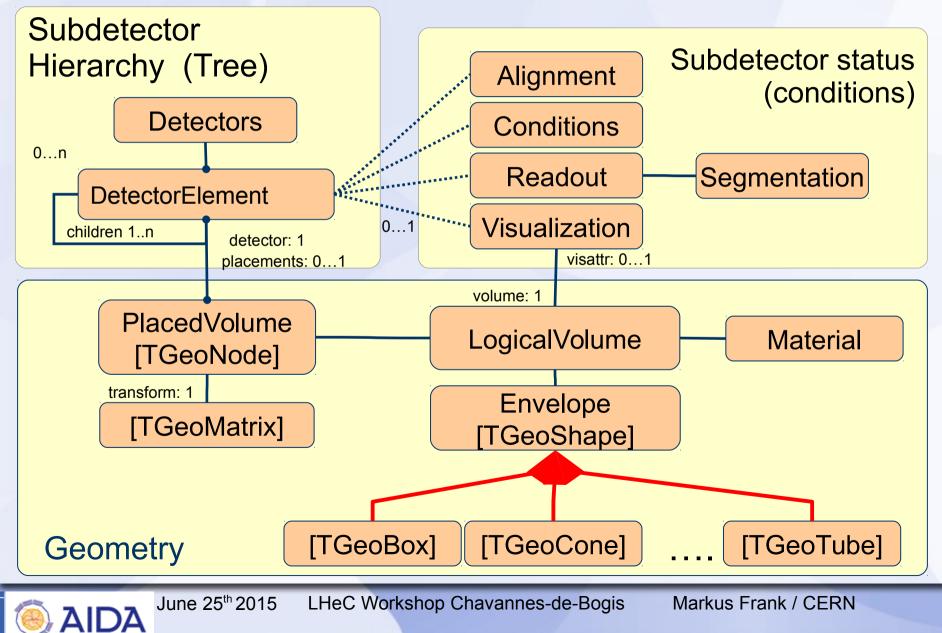
- ILD: F. Gaede et al., ported complete Mokka model ILD_o1_v05
- CLICdp: starting new design after CDR
- FCC-eh: P. Kostka et al.
- FCC-hh: A.Salzburger et al.


DD4hep	DDG4
Х	X
X	X
Х	X
Х	

Summary and Outlook


- The DD4hep toolkit (+extensions) start to become accepted: Client validation has started
- Simulation kit DDG4 being validated
- Alignment support to be completed
 - Requires conditions support for full functionality
 > DDCond: extension to be developed
- Validate, verify, enhance and document
- Happy to welcome new users
 and their contributions

Backup



Design Principles

- Separation of data and behavior
 - Data are fully accessible (no encapsulation!)
 - Behavioral classes are wrappers around objects containing data only
 - There may be many behavioral wrapper implementations using the same data objects
 - User chooses "most suitable" behavior
 - One "data-object" may be shared among many behavioral wrapper instances

Class Diagram: Detector Element

CÉRN

Standard Detector Palette: DDDetectors

- Mostly arose from the SiD model
 - Layer based detectors
 - Tracker barrel & endcap
 - Several calorimeter constructs
- Partially with measurement surfaces (see also talk by F. Gaede)

Plugin mechanism to enhance detector elements

- Neat mechanism to attach user defined optional data
 Proof that <u>'anticipate the unforeseen'</u> works
- NOT intrusive to detector constructors
- Flexible definition of the measurement surface

Geant4 Interactivity

Idle> ls /ddq4 Command directory path : /ddg4/

Guidance : Control for all named Geant4 actions

Sub-directories :

/dda4/RunInit/ Control hierarchy for Geant4 action:RunInit /ddg4/RunAction/ Control hierarchy for Geant4 action:RunAction /ddg4/EventAction/ Control hierarchy for Geant4 action: EventAction /dda4/LcioOutput/ Control hierarchy for Geant4 action:LcioOutput

Sub-directories : Commands :

show * Show all properties of Geant4 component:UserParticleHandler Control * Property item of type bool MinimalKineticEnergy * Property item of type double Name * Property item of type std::string OutputLevel * Property item of type int TrackingVolume_Rmax * Property item of type double TrackingVolume_Zmax * Property item of type double name * Property item of type std::string Idle> /ddg4/UserParticleHandler/TrackingVolume Rmax Geant4UIMessenger: +++ UserParticleHandler> Unchanged property value TrackingVolume_Rmax = 1265. Idle> /ddg4/UserParticleHandler/TrackingVolume Rmax 1.3*m Geant4UIMessenger: +++ UserParticleHandler> Setting property value TrackingVolume Rmax = 1.3*m native:1300. Idle> /ddg4/UserParticleHandler/TrackingVolume_Rmax Geant4UIMessenger: +++ UserParticleHandler> Unchanged property value TrackingVolume_Rmax = 1300. Idle>

Geant4 interactivity interfaced to every action object

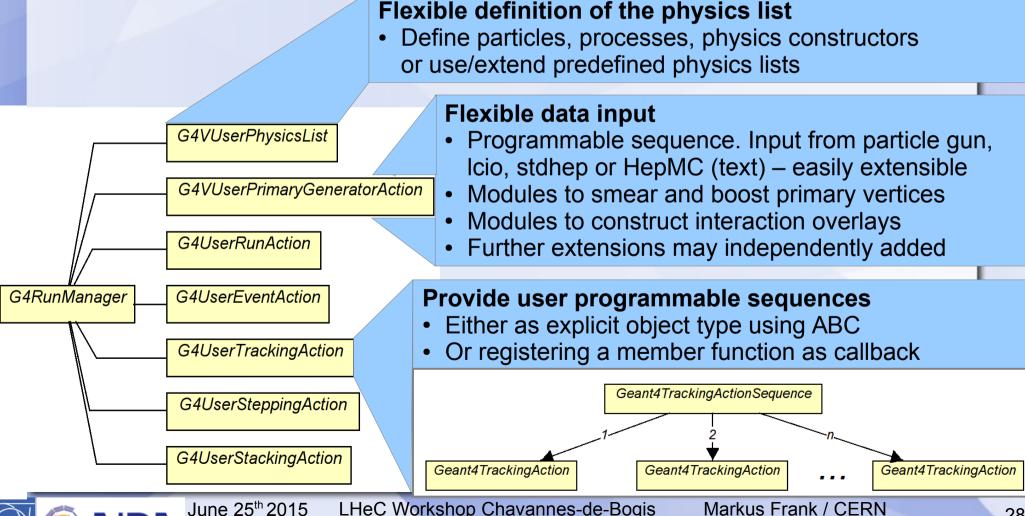
Enabled on request

Actions have properties (similar to Gaudi)

- Interrogate properties
- Modify properies

Configure DDG4 Application with python

```
kernel = DDG4.Kernel()
lcdd = kernel.lcdd()
kernel.loadGeometry("file:"+install_dir+"/DDDet
kernel.loadXML("file:"+example_dir+"/DDG4_field
DDG4.importConstants(lcdd)
```


```
Generation of isotrope tracks of a given multip
. . . .
# First particle generator: pi+
gen = DDG4.GeneratorAction(kernel,
          "Geant4IsotropeGenerator/IsotropPi+")
gen.Particle = 'pi+'
gen.Energy = 100 * \text{GeV}
gen.Multiplicity = 2
gen.Mask = 1
kernel.generatorAction().adopt(gen)
# Install vertex smearing for this interaction
gen = DDG4.GeneratorAction(kernel,
          "Geant4InteractionVertexSmear/SmearPi
gen.Mask = 1
gen.Offset = (20*mm, 10*mm, 10*mm, 0*ns)
gen.Sigma = (4*mm, 1*mm, 1*mm, 0*ns)
kernel.generatorAction().adopt(gen)
```

- Python configuration snippets
 - Loading geometry
 - Configuring actions
 - Steer Geant4 until it's prompt/batch
- C++ config ~ same
- Alternative: xml Load xml with lcdd


Geant4 Provided Hooks

[and what we want to do inside]

Main issue: flexible configuration

Example of an Action Sequence: Event Overlay with Features

AIDA