
DD4hep

DD4hep User Manual

DD4hep authors (dd4hep@cern.ch)

August 25, 2024

Version @DD4HEP_VERSION@

mailto:dd4hep@cern.ch

cb This manual is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

Contents

1 Introduction and General Overview 1
1.1 Project Scope and Requirements . 1
1.2 Toolkit Design . 2

1.2.1 The Compact Detector Description . 3
1.2.2 Detector Constructors . 3

1.3 Generic Detector Description Model . 4
1.3.1 Detector Element Tree versus the Geometry Hierarchy 5
1.3.2 Extensions and Views . 5

1.4 Simulation Support . 7
1.5 Detector Alignment Support . 7

2 Basics 9
2.1 Building DD4hep . 9

2.1.1 Supported Platforms . 9
2.1.2 Prerequisites . 10
2.1.3 CMake Build Options for DD4hep . 10
2.1.4 Build From Source . 11
2.1.5 Remarks . 11
2.1.6 Caveat . 11

2.2 DD4hep Handles . 11
2.3 The Data Extension Mechanism . 14
2.4 XML Tools and Interfaces . 15
2.5 The Detector Description Data Hub: Detector 17
2.6 Detector Description Persistency in XML . 20
2.7 Units . 23

2.7.1 Input data with units . 24
2.7.2 Output data with units . 24
2.7.3 Units in namespaces . 25

2.8 Material Description . 25
2.9 Shapes . 26

2.9.1 Shape factories . 38
2.10 Volumes and Placements . 42
2.11 Detector Elements . 44
2.12 Sensitive Detectors . 45
2.13 Description of the Readout Structure . 47

2.13.1 CellID Descriptors . 47
2.13.2 Segmentations . 48
2.13.3 Volume Manager . 48
2.13.4 Static Electric and Magnetic Fields . 48

V

Contents

2.14 Detector Constructors . 51
2.15 Tools and Utilities . 55

2.15.1 Geometry Visualization . 55
2.15.2 Geometry Conversion . 56
2.15.3 Overlap checking . 56
2.15.4 Geometry checking . 57
2.15.5 Directional Material Scans . 58
2.15.6 Plugin Test Program . 58

2.16 Standard Plugins . 59
2.16.1 Geometry Display . 59
2.16.2 Execute a Function in a Library . 59
2.16.3 Start the ROOT Interpreter . 60
2.16.4 Start the DD4hep UI . 60
2.16.5 Dump GDML Tables of the TGeoManager 60
2.16.6 Dump Optical Surfaces of the TGeoManager 60
2.16.7 Dump Skin Surfaces of the TGeoManager 61
2.16.8 Dump Border Surfaces of the TGeoManager 61
2.16.9 Dump the Element/Material Table of the TGeoManager 61
2.16.10 Load and Interprete XML file . 61
2.16.11 Load and Interprete XML Element . 62
2.16.12 Load and Initialize the DD4hep Volume Manager 62
2.16.13 Dump Detector Description to ROOT file 62
2.16.14 Load Detector Description from ROOT file 62
2.16.15 Dump Geometry to ROOT file . 63
2.16.16 Dump DetElement/Volume Tree . 63
2.16.17 Fill DetElement Cache . 63

2.17 Shape and Volume Plugins . 64
2.17.1 Assembly Shape Construction . 64
2.17.2 Scaled Shape Construction . 64
2.17.3 Box Shape Construction . 65
2.17.4 Half-Space Construction . 65
2.17.5 Cone Construction . 65
2.17.6 Polycone Construction . 66
2.17.7 Cone Segment Construction . 66
2.17.8 Tube Construction . 66
2.17.9 Trap Construction . 67
2.17.10 Regular Trapzoid (TRD1) Construction 68
2.17.11 Irregular Trapzoid (TRD2) Construction 68
2.17.12 Torus Shape Construction . 68
2.17.13 Sphere Shape Construction . 69
2.17.14 Paraboloid Shape Construction . 69
2.17.15 Hyperboloid Shape Construction . 69
2.17.16 Regular Polyhedron Construction . 70
2.17.17 Irregular Polyhedron Construction . 70
2.17.18 Eight-Point Solid Construction . 70
2.17.19 Tessellated Solid Construction . 70
2.17.20 Boolean Shape Construction . 70

VI

Contents

2.18 Readout Segmentation . 71

References 73

VII

1 Introduction and General Overview

The development of a coherent set of software tools for the description of High Energy Physics
detectors from a single source of information has been on the agenda of many experiments for
decades. Providing appropriate and consistent detector views to simulation, reconstruction
and analysis applications from a single information source is crucial for the success of the
experiments. Detector description in general includes not only the geometry and the materials
used in the apparatus, but all parameters describing e.g. the detection techniques, constants
required by alignment and calibration, description of the readout structures, conditions data,
etc.

The design of the DD4hep toolkit [1] is shaped on the experience of detector description systems,
which were implemented for the LHC experiments, in particular the LHCb experiment [2, 3], as
well as the lessons learnt from other implementations of geometry description tools developed
for the Linear Collider community [4, 5]. Designing a coherent set of tools, with most of the
basic components already existing in one form or another, is an opportunity for getting the
best of all existing solutions. DD4hep aims to widely reuse used existing software components,
in particular the ROOT geometry package [6], part of the ROOT project [7], a tool for
building, browsing, navigating and visualizing detector geometries. The code is designed to
optimize particle transport through complex structures and works standalone with respect to
any Monte-Carlo simulation engine. The ROOT geometry package provides sophisticated 3D
visualization functionality, which is ideal for building detector and event displays. The second
component is the Geant4 simulation toolkit [8], which is used to simulate the detector response
from particle collisions in complex designs. In DD4hep the geometrical representation provided
by ROOT is the main source of information. In addition DD4hep provides the automatic
conversions to other geometrical representations, such as Geant4, and the convenient usage of
these components without the reinvention of the existing functionality.

In Section 1.1 the scope and the high-level requirements of the DD4hep toolkit are elaborated
(in the following also called “the toolki”). This is basically the high level vision of the provided
functionality to the experimental communities. In Section 1.2 the high-level or architectural
design of the toolkit is presented, and in subsequent subsections design aspects of the various
functional components and their interfaces will be introduced.

1.1 Project Scope and Requirements

The detector description should fully describe and qualify the detection apparatus and must
expose access to all information required to interpret event data recorded from particle collisions.
Experience from the LHC experiments has shown that a generalized view, not limited only to
geometry, is very beneficial in order to obtain a coherent set of tools for the interpretation

1

1 Introduction and General Overview

of collision data. This is particularly important in later stages of the experiment’s life cycle,
when a valid set of detector data must be used to analyze real or simulated detector response
from particle collisions. An example would be an alignment application, where time dependent
precise detector positions are matched with the detector geometry.

The following main requirements influenced the design of the toolkit:

Full Detector Description:
the toolkit should be able to manage the data describing the detector geometry, the
materials used when building the structures, visualization attributes, detector readout
information, alignment, calibration and environmental parameters - all that is necessary
to interpret event data recorded from particle collisions.

The Full Experiment Life Cycle:
should be supported. The toolkit should support the development of the detector
concepts, detector optimizations, construction and later operation of the detector. The
transition from one phase to the next should be simple and not require new developments.
The initial phases are characterized by very ideal detector descriptions, i.e. only very
few parameters are sufficient to describe new detector designs. Once operational, the
detector will be different from the ideal detector, and each part of the detector will have
to have its own specific parameters and conditions, which are exposed by the toolkit.

One single source of detector information:
must be sufficient to perform all data processing applications such as simulation, re-
construction, online trigger and data analysis. This ensures that all applications see a
coherent description. In the past attempts by experiments to re-synchronize parallel
detector descriptions were always problematic. Consequently, the detector description is
the union of the information needed by all applications, though the level of detail may
be selectable.

Ease of Use:
influenced both the design and the implementation. The definition of subdetectors, their
geometrical description and the access to conditions and alignment data should follow
a minimalistic, simple and intuitive interface. Hence, the of the developer using the
toolkit is focused on specifics of the detector design and not on technicalities handled
transparently by the toolkit.

1.2 Toolkit Design

Figure 1.1 shows the architecture of the main components of the toolkit and their interfaces to
the end-user applications, namely the simulation, reconstruction, alignment and visualization.
The central element of the toolkit is the so-called generic detector description model. This is
an in-memory model, i.e., a set of C++ objects holding the data describing the geometry and
other information of the detector. The rest of the toolkit consists of tools and interfaces to
input or output information from this generic detector model. The model and its components
will be described in subsequence sections.

2

1.2 Toolkit Design

Figure 1.1: The components of the DD4hep detector geometry toolkit.

1.2.1 The Compact Detector Description

Inspired from the work of the linear collider detector simulation [9], the compact detector
description is used to define an ideal detector as typically used during the conceptual design
phase of an experiment. The compact description in its minimalistic form is probably not
going to be adequate later in the detector life cycle and is likely to be replaced or refined when
a more realistic detector with deviations from the ideal would be needed by the experiment.

In the compact description the detector is parametrized in minimalistic terms with user
provided parameters in XML. XML is an open format, the DD4hep parsers do not validate
against a fix schema and hence allow to easily introduce new elements and attributes to
describe detectors. This feature minimizes the burden on the end-user while still supporting
flexibility.

Such a compact detector descriptions cannot be interpreted in a general manner, therefore so
called Detector Constructors are needed.

1.2.2 Detector Constructors

Detector Constructors are relatively small code fragments that get as input an XML element
from the compact description that represents a single detector instance. The code interprets
the data and expands its geometry model in memory using the elements from the generic
detector description model described in section 1.3. The toolkit invokes these code fragments in
a data driven way using naming conventions during the initialization phase of the application.
Users focus on one single detector type at the time, but the toolkit supports them to still
construct complex and large detector setups. Two implementations are currently supported:
One is based on C++, which performs better and is able to detect errors at compiler time, but
the code is slightly more technical. The other is based on Python fragments, the code is more
readable and compact but errors are only detected at execution time.

3

1 Introduction and General Overview

Figure 1.2: Class diagram with the main classes and their relations for the Generic Detector
Description Model. The implementing ROOT classes are shown in brackets.

The compact description together with the detector constructors are sufficient to build the
detector model and to visualize it. If during the lifetime of the experiment the detector
model changes, the corresponding constructors will need to be adapted accordingly. DD4hep
provides already a palette of basic pre-implemented geometrical detector concepts to design
experiments. In view of usage of DD4hep as a detector description toolkit, this library may in
the future also adopt generic designs of detector components created by end users e.g. during
the design phase of future experiments.

1.3 Generic Detector Description Model

This is the heart of the DD4hep detector description toolkit. Its purpose is to build in memory
a model of the detector including its geometrical aspects as well as structural and functional
aspects. The design reuses the elements from the ROOT geometry package and extends
them in case required functionality is not available. Figure 1.2 illustrates the main players
and their relationships. Any detector is modeled as a tree of Detector Elements, the entity
central to this design, which is represented in the implementation by the DetElement class [2].
It offers all applications a natural entry point to any detector part of the experiment and
represents a complete sub-detector (e.g. TPC), a part of a sub-detector (e.g. TPC-Endcap), a
detector module or any other convenient detector device. The main purpose is to give access
to the data associated to the detector device. For example, if the user writes some TPC

4

1.3 Generic Detector Description Model

reconstruction code, accessing the TPC detector element from this code will provide access
the all TPC geometrical dimensions, the alignment and calibration constants and other slow
varying conditions such as the gas pressure, end-plate temperatures etc. The Detector Element
acts as a data concentrator. Applications may access the full experiment geometry and all
connected data through a singleton object called Detector, which provides management,
bookkeeping and ownership to the model instances.

The geometry is implemented using the ROOT geometry classes, which are used directly without
unnecessary interfaces to isolate the end-user from the actual ROOT based implementation.
There is one exception: The constructors are wrapped to facilitate a very compact and readable
notation to end-users building custom Detector Constructors.

1.3.1 Detector Element Tree versus the Geometry Hierarchy

The geometry part of the detector description is delegated to the ROOT classes. Logical
Volumes are the basic objects used in building the geometrical hierarchy. A Logical Volume is a
shape with its dimensions and consist of a given material. They represent unpositioned objects
which store all information about the placement of possibly embedded volumes. The same
volume can be replicated several times in the geometry. The Logical Volume also represents a
system of reference with respect to its containing volumes. The reuse of instances of Logical
Volumes for different placements optimizes the memory consumption and detailed geometries
for complex setups consisting of millions of volumes may be realized with reasonable amount
of memory. The difficulty is to identify a given positioned volume in space and e.g. applying
misalignment to one of these volumes. The relationship between the Detector Element and
the placements is not defined by a single reference to the placement, but the full path from
the top of the detector geometry model to resolve existing ambiguities due to the reuse of
Logical Volumes. Hence, individual volumes must be identified by their full path from mother
to daughter starting from the top-level volume.

The tree structure of Detector Elements is a parallel structure to the geometrical hierarchy.
This structure will probably not be as deep as the geometrical one since there would not need
to associate detector information at very fine-grain level - it is unlikely that every little metallic
screw needs associated detector information such as alignment, conditions, etc. Though this
screw and many other replicas must be described in the geometry description since it may be
important e.g. for its material contribution in the simulation application. Thus, the tree of
Detector Elements is fully degenerate and each detector element object will be placed only once
in the detector element tree as illustrated for a hypothetical TPC detector in Figure 1.3.

1.3.2 Extensions and Views

As depicted in Figure 1.1 the reconstruction application will require special functionality
extending the basics offered by the common detector element. This functionality may be
implemented by a set of specialized classes that will extend the detector element. These
extensions will be in charge of providing specific answers to the questions formulated by the
reconstruction algorithms such as pattern recognition, tracking, vertexing, particle identifi-
cation, etc. One example could be to transform a calorimeter cell identifier into a 3D space

5

1 Introduction and General Overview

Figure 1.3: The object diagram of a hypothetical TPC detector showing in parallel the Detector
Element and the Geometry hierarchy and the relationships between the objects.

position in the global coordinate system. A generic detector description toolkit would be
unable to answer this concrete question, however it provides a convenient environment for
the developer to slot-in code fragments, which implement the additional functionality using
parameters stored in the XML compact description.

Depending on the functionality these specialized component must be able to either store
additional data, expose additional behavior or both. Additional behavior may easily be added
overloading the DetElement class using its internal data. The internal data is public and
addressed by reference, hence any number of views extending the DetElement behavior may
be constructed with very small overhead. Additional data may be added by any user at any
time to any instance of the DetElement class using a simple aggregation mechanism shown in
Figure 1.4. Data extensions must differ by their type. The freedom to attach virtually any
data item allows for optimized attachments depending on the application type, such as special
attachments for reconstruction, simulation, tracking, etc.

This design allows to build views addressing the following use-cases:

Convenience Views
provide higher level abstractions and internally group complex calculations. Such views
simplify the life of the end-users.

Optimization Views
allows end-users extend the data of the common detector detector element and store
precomputed results, which would be expensive to obtain repeatedly.

Compatibility Views
help to ensure smooth periods of software redesign. During the life-time of the experiment
often various software constructs are for functional reasons re-designed and re-engineered.
Compatibility Views either adapt new data designs to existing application code or expose
new behavior based on existing data.

6

1.4 Simulation Support

Figure 1.4: Extensions may be attached to common Detector Elements which extend the
functionality of the common DetElement class and support e.g. caching of pre-
computed values.

1.4 Simulation Support

Detector-simulation depends strongly on the use of an underlying simulation toolkit, the most
prominent candidate nowadays being Geant4 [8]. DD4hep supports simulation activities with
Geant4 providing an automatic translation mechanism between geometry representations. The
simulation response in the active elements of the detector is not implemented by the toolkit,
since it is strongly influenced by the technical choices and precise simulations depends on the
very specific detection techniques. In Geant4 this response is computed in software constructs
called Sensitive Detectors.

Ideally DD4hep aims to provide a generic simulation application. Similar to the palette of
pre-implemented geometrical detector concepts to design experiments, it provides a palette of
Sensitive Detectors to simulate the detector response in form of a component library. Detector
designers may base the simulation of a planned experiment on these predefined components
for initial design and optimization studies. In a similar way easy access and configuration of
other user actions of Geant4 is provided.

1.5 Detector Alignment Support

The support for alignment operations is crucial to the usefulness of the toolkit. In the
linear collider community this support is basically missing in all the currently used geometry
description systems. The possibility to apply into the detector description alignment deltas
(differences with respect the ideal or measured position) and read them from an external
source is mandatory to exploit the toolkit. A typical alignment application would consist of
calculating a new set of deltas from a given starting point, which could then be loaded and
applied again in order to validate the alignment by recalculating some alignment residuals.
The ROOT geometry package supports to apply an [mis]-alignment to touchable objects in the
geometry. Touchable objects are identified by the path of positioned volumes starting with the
top node (e.g. path=/TOP/A1/B4/C3). Contrary to ordinary multiple placements of Logical

7

1 Introduction and General Overview

Volumes, touchable objects are degenerate and only valid for one single volume [6]. To simplify
the usage for the end user, the identification of a positioned volume will be connected to the
Detector Element, where only the relative path with respect to the Detector Element will
have to be specified rather the full path from the top volume. The delta-values will have to be
read from various data sources. The initial implementation will be based on simple XML files,
later a connection to other sources such as the detector conditions database is envisaged.

8

2 Basics

This chapter describes how supply a physics application developed with all the information
related to the detector which is necessary to process data from particle collisions and to qualify
the detecting apparatus in order to interpret these event data.

The clients of the detector description are the algorithms residing in the event processing
framework that need this information in order to perform their job (reconstruction, simulation,
etc.). The detector description provided by DD4hep is a framework for developers to provide
the specific detector information to software algorithms, which process data from particle
collisions.

In the following sections an overview is given over the various independent elements of DD4hep
followed by the discussion of an example which leads to the description of a detector when
combining these elements. This includes a discussion of the features of the DD4hep detector
description and of its structure.

2.1 Building DD4hep

The DD4hep source code is freely available and is distributed under the GPLv3 License. See
the doc/LICENSE in the repository [1] for more information. Please read the Release Notes
before downloading or using this release.

The DD4hep project consists of several packages. The idea has been to separate the common
parts of the detector description toolkit from concrete detector examples.

The package DDCore contains the definition of the basic classes of the toolkit: Handle,
DetElement, Volume, PlacedVolume, Shapes, Material, etc. Most of these classes are
handles to ROOT’s TGeom classes.

2.1.1 Supported Platforms

Actively supported and tested platforms for DD4hep are :

• Scientific Linux CERN 6

• CERN CentOS 7

• Apple macOS

Support for any other platform will well be taken into account, but can only be actively
supported by users who submit the necessary patches.

9

2 Basics

2.1.2 Prerequisites

DD4hep depends on a number of external packages. The user will need to install these in
his/her system before building and running the examples

• CMake version 3.4 or higher

• ROOT 6 installations.

• Xerces-C if used to parse compact descriptions an installation of Xerces-C will is
required.

• To build DDG4 it is mandatory to have an installation of the Boost header files.

• To build and run the simulation examples Geant4 will be required.

2.1.3 CMake Build Options for DD4hep

The package provides the basic mechanisms for constructing the Generic Detector Description
Model in memory from XML compact detector definition files. Two methods are currently
supported: one based on the C++ Xerces-C parser.

The XML parsing method is enabled by default using the TinyXML parser. Optionally instead
of TinyXML the Xerces-C parser may be chosen by setting the two configuration options
appropriately:

1 -DDD4HEP_USE_XERCESC=ON
2 -DXERCESC_ROOT_DIR=<path to Xerces-C-installation-directory>

DDG4 is the package that contains the conversion of DD4hep geometry into Geant4 geometry
to be used for simulation. The option DD4HEP_WITH_GEANT4:BOOL controls the building or
not of this package that has the dependency to Geant4. The Geant4 installation needs to be
located using the variable:

1 -DDD4HEP_WITH_GEANT4=ON
2 -DGeant4_DIR=<path to Geant4Config.cmake>

To properly handle component properties using boost::spirit, access to the Boost header
files must be provided.

1 -DBoost_INCLUDE_DIR=<path to the boost include directory>
2 -DBoost_NO_BOOST_CMAKE=ON (to disable the search of boost-cmake)

To build only the doxygen documentation and user manuals without the need for any depen-
dencies one can use the following command

1 cmake -DBUILD_DOCS_ONLY=ON ..

After one can execute the following target for building doxygen documentation

10

2.2 DD4hep Handles

1 make reference

and for building the user manuals

1 make pdf

2.1.4 Build From Source

NEED REWRITE ONCE FINALIZED

2.1.5 Remarks

The main reference is the doxygen information of DD4hep and the ROOT documentation.
Please refer to these sources for a detailed view of the capabilities of each component and/or
its handle. For coherence reasons, the description of the interfaces is limited to examples
which illustrate the usage of the basic components.

2.1.6 Caveat

NEEDS ADDITIONAL CLARIFICATION

2.2 DD4hep Handles

Handles are the means of clients accessing DD4hep detector description data. Handles are
an intrinsic ingredient to DD4hep meant to also support various views onto relatively simple
structures. The data itself is not held by the handle itself, the handle only allows the access
to the data typically held by a pointer.

DD4hep internally prefers to expose data structures which are as simple as possible while
at the same time being as complicated as necessary. These objects are then manipulated by
Handles, smart pointer objects with sometimes specialized functionality depending on the
contained data type. It is seen as a clear advantage that these smart pointer objects to not
impose any restrictions on the underlying object except the accessibility of the contained
data.

The freedom to attach handle based facades to virtually any data item allows for optimized data
views depending on the application type, such as special views for reconstruction, simulation,
tracking, etc.

For the importance of the functionality of this issue we repeat here the functionality described
in 1.3.2 which is achieved by specializing the basic templated handle implementation:

11

2 Basics

Convenience Views
provide higher level abstractions and internally group complex calculations. Such views
simplify the life of the end-users.

Optimization Views
allows end-users extend the data of the common detector detector element and store
precomputed results, which would be expensive to obtain repeatedly.

Compatibility Views
help to ensure smooth periods of software redesign. During the life-time of the experiment
often various software constructs are for functional reasons re-designed and re-engineered.
Compatibility Views either adapt new data designs to existing application code or expose
new behavior based on existing data.

Since the lifetime of DD4hep objects is mostly defined by the lifetime of the dd4hep::Detector
object (in turn defining the lifetime of ROOT’s TGeoManager) or for the conditions is managed
by the ConditionsManager object under the steering of the embedding framework there is also
no memory model imposed which would only lead to performance penalties. Hence, handles
can be applied to data structures independent of their origin:

• allocated from the stack

• allocated from the heap

• allocated as single objects of in bulk by array constructors.

There is no restriction to allow toolkit users to extend any of the internally used DD4hep classes
such as e.g. the dd4hep::DetElement data object dd4hep::detail::DetElementObject with
their own implementation supporting further enhanced functionality both in terms of additional
data and additional member functions provided the user specialized class inherits from the
DD4hep provided base. Obviously such enhancements do not hold for the geometry classes
provided by ROOT because here the ROOT framework internally calls its object constructors.
Hence, though DD4hep internally uses templated handles to manipulate data objects, DD4hep
allows for all freedom to extend any of the internally used objects and a priori no restrictions
are imposed by the DD4hep framework besides the mentioned inheritance.

The design approach of DD4hep to internally use handles to manipulate objects which is also
offered to clients clearly has difficulties to support the Liskov substitution principle. This was
a conscious decision when designing DD4hep.

Frameworks which see the substitution principle for the implementation of the simple data
structures mandatory for its functionality clearly limit the benefits of the handles unless

• the depending frameworks provides handles which are a fully implemented facade or

• the depending framework use consistently the operator->() provided by all handles to
directly access the underlying object or

• the depending framework uses DD4hep and it is provided only internally and provide top
level user code only with pointers/references to the data structures in their full object
oriented glory.

12

2.2 DD4hep Handles

The template handle class (see for details the Handle.h header file) allows type safe assignment
of other unrelated handles and supports standard data conversions to the underlying object in
form of the raw pointer, a reference etc. The template handle class:

1 template <typename T> class Handle {
2 public:
3 // Type definitions and class specific abbreviations and forward declarations
4 typedef T Implementation;
5 typedef Handle<Implementation> handle_t;
6 public:
7 // Single and only data member: pointer to the underlying object
8 T* m_element;
9 public:

10 Handle() : m_element(0) { }
11 Handle(T* e) : m_element(e) { }
12 Handle(const Handle<T>& e) : m_element(e.m_element) { }
13 template<typename Q> Handle(Q* e) : m_element((T*)e) { verifyObject(); }
14 template<typename Q> Handle(const Handle<Q>& e) : m_element((T*)e.m_element) {

verifyObject(); }↪→

15 Handle<T>& operator=(const Handle<T>& e) { m_element=e.m_element; return *this;}
16 bool isValid() const { return 0 != m_element; }
17 bool operator!() const { return 0 == m_element; }
18 void clear() { m_element = 0; }
19 T* operator->() const { return m_element; }
20 operator T& () const { return *m_element; }
21 T& operator*() const { return *m_element; }
22 T* ptr() const { return m_element; }
23 template <typename Q> Q* _ptr() const { return (Q*)m_element; }
24 template <typename Q> Q* data() const { return (Q*)m_element; }
25 template <typename Q> Q& object() const { return *(Q*)m_element; }
26 const char* name() const;
27 };

effectively works like a pointer with additional object validation during assignment and
construction. Handles support direct access to the held object: either by using the

operator->() (See line 19 above)

or the automatic type conversions:

operator T& () const (See line 20-21 above)
T& operator*() const

All entities of the DD4hep detector description are exposed as handles - raw pointers should
not occur in the code. The handles to these objects serve two purposes:

• Hold a pointer to the object and extend the functionality of a raw pointer.

• Enable the creation of new objects using specialized constructors within sub-classes. To
ensure memory integrity and avoid resource leaks these created objects should always be
stored in the detector description data hub Detector described in section 2.5.

13

https://dd4hep.web.cern.ch/dd4hep/reference/classdd4hep_1_1Handle.html

2 Basics

2.3 The Data Extension Mechanism

Data extensions are client defined C++ objects aggregated to basic DD4hep objects. The need
to introduce such data extensions results from the simple fact that no data structure can be
defined without the iterative need in the long term to extend it leading to implementations,
which can only satisfy a subset of possible clients. To accomplish for this fact a mechanism
was put in place which allows any user to attach any supplementary information provided
the information is embedded in a polymorph object with an accessible destructor. There is
one limitation though: object extension must differ by their interface type. There may not
be two objects attached with the identical interface type. The actual implemented sub-type
of the extension is not relevant. Separating the interface type from the implementation type
keeps client code still functional even if the implementation of the extension changes or is a
plug-able component.

The following code snippet shows the extension interface:

1 /// Extend the object with an arbitrary structure accessible by the type
2 template <typename IFACE, typename CONCRETE> IFACE* addExtension(CONCRETE* c);
3 /// Access extension element by the type
4 template <class T> T* extension() const;

Assuming a client class of the following structure:

1 class ExtensionInterface {
2 virtual ~ExtensionInterface();
3 virtual void foo() = 0;
4 };
5

6 class ExtensionImplementation : public ExtensionInterface {
7 ExtensionImplementation();
8 virtual ~ExtensionImplementation();
9 virtual void foo();

10 };

is then attached to an extensible object as follows:

1 ExtensionImplementation* ptr = new ExtensionImplementation();
2 /// ... fill the ExtensionImplementation instance with data ...
3 module.addExtension<ExtensionInterface>(ptr);

The data extension may then be retrieved whenever the instance of the extensible object
“module” is accessible:

1 ExtensionInterface* ptr = module.extension<ExtensionInterface>();

The look-up mechanism is rather efficient. Though it is advisable to cache the pointer within
the client code if the usage is very frequent.

There are currently three object types present which support this mechanism:

• the central object of DD4hep, the Detector class discussed in section 2.5.

14

2.4 XML Tools and Interfaces

• the object describing subdetectors or parts thereof, the DetElement class discussed in
section 2.11. Detector element extensions in addition require the presence of a copy
constructor to support e.g. reflection operations. Without a copy mechanism detector
element hierarchies could cloned.

• the object describing sensitive detectors, the SensitiveDetector class discussed in
section 2.12.

2.4 XML Tools and Interfaces

Using native tools to interpret XML structures is rather tedious and lengthy. To easy the access
to XML data considerable effort was put in place to easy the life of clients as much as possible
using predefined instructs to access XML attributes, elements or element collections.

The functionality of the XML tools is perhaps best shown with a small example. Imagine to
extract the data from an XML snippet like the following:

1 <detector name="Something">
2 <tubs rmin="BP_radius - BP_thickness" rmax="BP_radius"

zhalf="Endcap_zmax/2.0"/>↪→

3 <position x="0" y="0" z="Endcap_zmax/2.0" />
4 <rotation x="0.0" y="CrossingAngle/2.0" z="0.0" />
5 <layer id="1" inner_r="Barrel_r1" outer_r="Barrel_r1 + 0.02*cm"

inner_z="Barrel_zmax + 0.1*cm">↪→

6 <slice material = "G10" thickness ="0.5*cm"/>
7 </layer>
8 <layer id="2" inner_r="Barrel_r2" outer_r="Barrel_r2 + 0.02*cm"

inner_z="Barrel_zmax + 0.1*cm">↪→

9 <slice material = "G10" thickness ="0.5*cm"/>
10 </layer>
11
12 </detector>

The variable names used in the XML snippet are evaluated when interpreted. Unless the
attributes are accessed as strings, the client never sees the strings, but only the evaluated
numbers. The anatomy of the C++ code snippets to interpret such a data section looks very
similar:

1 static void some_xml_handler(xml_h e) {
2 xml_det_t x_det (e);
3 xml_comp_t x_tube = x_det.tubs();
4 xml_dim_t pos = x_det.position();
5 xml_dim_t rot = x_det.rotation();
6 string name = x_det.nameStr();
7

8 for(xml_coll_t i(x_det,_U(layer)); i; ++i) {
9 xml_comp_t x_layer = i;

10 double zmin = x_layer.inner_z();
11 double rmin = x_layer.inner_r();
12 double rmax = x_layer.outer_r();

15

2 Basics

13 double layerWidh = 0;
14

15 for(xml_coll_t j(x_layer,_U(slice)); j; ++j) {
16 double thickness = xml_comp_t(j).thickness();
17 layerWidth += thickness;
18 }
19 }
20 }

In the above code snippet an XML (sub-)tree is passed to the executing function as a handle to
an XML element (xml_h). Such handles may seamlessly be assigned to any supporting helper
class inheriting from the class XML::Element, which encapsulates the functionality required
to interpret the XML structures. Effectively the various XML attributes and child nodes are
accessed using functions with the same name from a convenience handle. In lines 3-5 child
nodes are extracted, lines 10-12,16 access element attributes.Element collections with the same
tag names layer and slice are exposed to the client code using an iteration mechanism.

Note the macros _U(layer) and _U(slice): When using Xerces-C as an XML parser, it will
expand to the reference to an object containing the unicode value of the string “layer”. The
full list of predefined tag names can be found in the include file XML/UnicodeValues.h. If
a user tag is not part in the precompiled tag list, the corresponding Unicode string may be
created with the macro _Unicode(layer) or the function Unicode(“layer”).

The convenience handles actually implement these functions to ease life. There is no magic
- newly created attributes with new names obviously cannot be accessed with convenience
mechanism. Hence, either you know what you are doing and you create your own convenience
handlers or you restrict yourself a bit in the creativity of defining new attribute names.

There exist several utility classes to extract data from predefined XML tags:

• Any XML element is described by an XML handle XML::Handle_t (xml_t). Handles are the
basic structure for the support of higher level interfaces described above. The assignment
of a handle to any of the interfaces below is possible.

• The class XML::Element (xml_elt_t) supports in a simple way the navigation through
the hierarchy of the XML tree accessing child nodes and attributes. Attributes at this
level are named entities and the tag name must be supplied.

• The class XML::Dimension with the type definition xml_dim_t, supports numerous
access functions named identical to the XML attribute names. Such helper classes simplify
the tedious string handling required by the

• The class XML::Component (xml_comp_t) and the class XML::Detector (xml_det_t)
resolving other issues useful to construct detectors.

• Sequences of XML elements with an identical tag name may be handled as iterations as
shown in the Figure above using the class XML::Collection_t.

• Convenience classes, which allow easy access to element attributes may easily be con-
structed using the methods of the XML::Element class. This allows to construct very
flexible thou non-intrusive extensions to DD4hep. Hence there is a priori no need to

16

2.5 The Detector Description Data Hub: Detector

modify these helpers for the benefit of only one single client. In the presence of multiple
requests such extensions may though be adopted.

It is clearly the responsibility of the client to only request attributes from an XML element,
which exist. If an attribute, a child node etc. is not found within the element an exception is
thrown.

The basic interface of the XML::Element class allows to access tags and child nodes not exposed
by the convenience wrappers:

1 /// Access the tag name of this DOM element
2 std::string tag() const;
3 /// Access the tag name of this DOM element
4 const XmlChar* tagName() const;
5

6 /// Check for the existence of a named attribute
7 bool hasAttr(const XmlChar* name) const;
8 /// Retrieve a collection of all attributes of this DOM element
9 std::vector<Attribute> attributes() const;

10 /// Access single attribute by its name
11 Attribute getAttr(const XmlChar* name) const;
12 /// Access attribute with implicit return type conversion
13 template <class T> T attr(const XmlChar* tag) const;
14 /// Access attribute name (throws exception if not present)
15 const XmlChar* attr_name(const Attribute attr) const;
16 /// Access attribute value by the attribute (throws exception if not present)
17 const XmlChar* attr_value(const Attribute attr) const;
18

19 /// Check the existence of a child with a given tag name
20 bool hasChild(const XmlChar* tag) const;
21 /// Access child by tag name. Thow an exception if required in case the child is

not present↪→

22 Handle_t child(const Strng_t& tag, bool except = true) const;
23 /// Add a new child to the DOM node
24 Handle_t addChild(const XmlChar* tag) const;
25 /// Check if a child with the required tag exists - if not create it and add it

to the current node↪→

26 Handle_t setChild(const XmlChar* tag) const;

2.5 The Detector Description Data Hub: Detector

As shown in Figure 1.2, any access to the detector description data is done using a standardized
interface called Detector. During the configuration phase of the detector the interface is used
to populate the internal data structures. Data structures present in the memory layout of the
detector description may be retrieved by clients at any time using the Detector interface class.
This includes of course, the access during the actual detector construction. The following code
listing shows the accessor method to retrieve detector description entities from the interface.
Not shown are access methods for groups of these entities and the methods to add objects:

17

https://dd4hep.web.cern.ch/dd4hep/reference/classdd4hep_1_1Detector.html

2 Basics

1 class Detector {
2 ///+++ Shortcuts to access often used quantities
3

4 /// Return handle to material describing air
5 virtual Material air() const = 0;
6 /// Return handle to material describing vacuum
7 virtual Material vacuum() const = 0;
8 /// Return handle to "invisible" visualization attributes
9 virtual VisAttr invisible() const = 0;

10

11 ///+++ Access to the top level detector elements and the corresponding volumes
12

13 /// Return reference to the top-most (world) detector element
14 virtual DetElement world() const = 0;
15 /// Return reference to detector element with all tracker devices.
16 virtual DetElement trackers() const = 0;
17

18 /// Return handle to the world volume containing everything
19 virtual Volume worldVolume() const = 0;
20 /// Return handle to the volume containing the tracking devices
21 virtual Volume trackingVolume() const = 0;
22

23 ///+++ Access to geometry and detector description objects
24

25 /// Retrieve a constant by its name from the detector description
26 virtual Constant constant(const std::string& name) const = 0;
27 /// Retrieve a matrial by its name from the detector description
28 virtual Material material(const std::string& name) const = 0;
29 /// Retrieve a field component by its name from the detector description
30 virtual DetElement detector(const std::string& name) const = 0;
31 /// Retrieve a sensitive detector by its name from the detector description
32 virtual SensitiveDetector sensitiveDetector(const std::string& name) const = 0;
33 /// Retrieve a readout object by its name from the detector description
34 virtual Readout readout(const std::string& name) const = 0;
35 /// Retrieve a id descriptor by its name from the detector description
36 virtual IDDescriptor idSpecification(const std::string& name) const = 0;
37 /// Retrieve a subdetector element by its name from the detector description
38 virtual CartesianFieldfield(const std::string& name) const = 0;
39

40 ///+++ Access to visualisation attributes and Geant4 processing hints
41

42 /// Retrieve a visualization attribute by its name from the detector description
43 virtual VisAttr visAttributes(const std::string& name) const = 0;
44

45 /// Retrieve a region object by its name from the detector description
46 virtual Region region(const std::string& name) const = 0;
47 /// Retrieve a limitset by its name from the detector description
48 virtual LimitSet limitSet(const std::string& name) const = 0;
49 //...
50

51 ///+++ Extension mechanism:

18

2.5 The Detector Description Data Hub: Detector

52 /// Extend the sensitive detector element with an arbitrary structure accessible
by the type↪→

53 template <typename IFACE, typename CONCRETE> IFACE* addExtension(CONCRETE* c)
54 };

As shown in the above listing, the Detector interface is the main access point to access a
whole set

• often used predefined values such as the material “air” or “vacuum” (line 5–10).

• the top level objects “world”, “trackers” and the corresponding volumes (line 14–21).

• items in the constants table containing named definitions also used during the interpre-
tation of the XML content after parsing (line 26)

• named items in the the material table (line 28)

• named subdetectors after construction and the corresponding (line 30)

• named sensitive detectors with their (line 32)

• named readout structure definition using a (line 34)

• named readout identifier descriptions (line 36)

• named descriptors of electric and/or magnetic fields (line 39).

Additional support for specialized applications is provided by the interface:

• Geant4: named region settings (line 46)

• Geant4: named limits settings (line 48)

• Visualization: named visualization attributes (line 43)

• User defined extensions (line 53) are supported with the extension mechanism described
in section 2.3.

All the values are populated either directly from XML or from detector constructors (see
section 1.2.2). The interface also allows to load XML configuration files of any kind provided an
appropriate interpretation plugin is present. In the next section we describe the functionality
of the “lccd” plugin used to interpret the compact detector description. This mechanism can
easily be extended using ROOT plugins, where the plugin name must correspond to the XML
root element of the document to be interpreted.

19

2 Basics

2.6 Detector Description Persistency in XML

As explained in a previous section, the mechanism involved in the data loading allow an
application to be fairly independent of the technology used to populate the transient detector
representation. However, if one wants to use a given technology, she/he has to get/provide
the corresponding conversion mechanism. The choice of XML was driven mainly by its easiness
of use and the number of tools provided for its manipulation and parsing. Moreover, XML data
can be easily translated into many other format using tools like XSLT processors. The grammar
used for the XML data is pretty simple and straight forward, actually very similar to other
geometry description languages based on XML. For example the material description is nearly
identical to the material description in GDML [10]. The syntactic structure of the compact XML
description was taken from the SiD detector description [9]. The following listing shows the
basic layout of any the compact detector description file with its different sections:

1 <lccdd>
2 <info> ... </info> Auxiliary detector model information
3 <includes> ... </includes> Section defining GDML files to be included
4 <define> ... </define> Dictionary of constant expressions and variables
5 <materials> ... </materials> Additional material definitions
6 <display> ... </display> Definition of visualization attributes
7 <detectors> ... </detectors> Section with sub-detector definitions
8 <readouts> ... </readouts> Section with readout structure definitions
9 <limits> ... </limits> Definition of limit sets for Geant4

10 <fields> ... </fields> Field definitions
11 </lccdd>

The root tag of the XML tree is lccdd. This name is fixed. In the following the content of the
various sections is discussed. The XML sections are filled with the following information:

• The <info> sub-tree contains auxiliary information about the detector model:

1 <info name="clic_sid_cdr"
2 title="CLIC Silicon Detector CDR"
3 author="Christian Grefe"
4 url="https://twiki.cern.ch/twiki/bin/view/CLIC/ClicSidCdr"
5 status="development"
6 version="$Id: compact.xml 665 2013-07-02 18:49:26Z markus.frank $">
7 <comment>The compact format for the CLIC Silicon Detector used
8 for the conceptual design report</comment>
9 </info>

• The <includes> section allows to include GDML sub-trees containing material de-
scriptions. These files are processed before the detector constructors are called:

1 <includes>
2 <file ref="elements.xml"/>
3 <file ref="materials.xml"/>
4 ...
5 </includes>

20

2.6 Detector Description Persistency in XML

For historic reasons the tag <gdmlFile> is supported but deprecated in parallel with
the new tag <file>.

• The <define> section contains all variable definitions defined by the client to simplify
the definition of subdetectors. These name-value pairs are fed to the expression evaluator
and must evaluate by default to a number. The data type number is assumed by default
(see example below). These number variables can be combined to formulas e.g. to
automatically re-dimension subdetectors if boundaries are changed:

1 <define>
2 <constant name="world_side" value="30000" type="number"/>
3 <constant name="world_x" value="world_side"/>
4 <constant name="world_y" value="world_side"/>
5 <constant name="world_z" value="world_side"/>
6
7 </define>

The other allowed data type is string. string values are stored in the raw format in
the Detector object instance and can be retrieved by name. The values are as well
added to the evaluation dictionary in order to resolve e.g. environment paths.

• The <materials> sub-tree contains additional materials, which are not contained in
the default materials tables. The snippet below shows an example to extend the table of
known materials. For more details please see section 2.8.

1 <materials>
2 <!-- The description of an atomic element or isotope -->
3 <element Z="30" formula="Zn" name="Zn" >
4 <atom type="A" unit="g/mol" value="65.3955" />
5 </element>
6 ...
7 <!-- The description of a new material -->
8 <material name="CarbonFiber_15percent">
9 ...

10 </material>
11 ...
12 </materials>

• The visualization attributes are defined in the <display> section. Clients access
visualization settings by name. The possible attributes are shown below and essentially
contain the RGB color values, the visibility and the drawing style:

1 <display>
2 <vis name="InvisibleNoDaughters"
3 showDaughters="false"
4 visible="false"/>
5 <vis name="SiVertexBarrelModuleVis"
6 alpha="1.0" r="1" g="1" b="0.6"
7 drawingStyle="solid"
8 showDaughters="true"
9 visible="true"/>

21

2 Basics

10
11 </display>

• <Limisets> contain parameters passed to Geant4:

1 <limits>
2 <limitset name="cal_limits">
3 <limit name="step_length_max" particles="*" value="5.0" unit="mm" />
4 </limitset>
5 </limits>

• The detectors section contains subtrees of the type <detector> which contain all
parameters used by the detector constructors to actually expand the geometrical structure.
Each subdetector has a name and a type, where the type is used to call the proper
constructor plugin. If the subdetector element is sensitive, a forward reference to the
corresponding readout structure is mandatory. The remaining parameters are user
defined:

1 <detectors>
2 <detector id="4" name="SiTrackerEndcap" type="SiTrackerEndcap"

readout="SiTrackerEndcapHits">↪→

3 <comment>Outer Tracker Endcaps</comment>
4 <module name="Module1" vis="SiTrackerEndcapModuleVis">
5 <trd x1="36.112" x2="46.635" z="100.114/2" />
6 <module_component thickness="0.00052*cm" material="Copper" />
7 <module_component thickness="0.03*cm" material="Silicon"

sensitive="true" />↪→

8 ...
9 </module>

10 ...
11 <layer id="1">
12 <ring r="256.716" zstart="787.105+1.75" nmodules="24" dz="1.75"

module="Module1"/>↪→

13 <ring r="353.991" zstart="778.776+1.75" nmodules="32" dz="1.75"
module="Module1"/>↪→

14 <ring r="449.180" zstart="770.544+1.75" nmodules="40" dz="1.75"
module="Module1"/>↪→

15 </layer>
16 ...
17 </detector>
18 </detectors>

• The <readouts> section defined the encoding of sensitive volumes to so-called cell-ids,
which are in DD4hep 64-bit integer numbers. The encoding is subdetector dependent
with one exception: to uniquely identity each subdetector, the width of the system field
must be the same.

1 <readouts>
2 <readout name="SiTrackerEndcapHits">
3 <id>system:8,barrel:3,layer:4,module:14,sensor:2,side:32:-2,strip:20</id>
4 </readout>

22

2.7 Units

5 ...
6 </readouts>

• Electromagnetic fields are described in the <fields> section. There may be several
fields present. In DD4hep the resulting field vectors may be both electric and magnetic.
The strength of the overall field is calculated as the superposition of the individual
components:

1 <fields>
2 <field name="GlobalSolenoid" type="solenoid"
3 inner_field="5.0*tesla"
4 outer_field="-1.5*tesla"
5 zmax="SolenoidCoilOuterZ"
6 outer_radius="SolenoidalFieldRadius">
7 </field>
8 ...
9 </fields>

2.7 Units

DD4hep offers the user the possibility to choose and use the preferred units for any quantity
and offers a consistent units solution defined as:

1 static constexpr double centimeter = 1.;
2 static constexpr double second = 1.;
3 static constexpr double kiloelectronvolt = 1;
4 static constexpr double eplus = 1.;
5 static constexpr double kelvin = 1.;
6 static constexpr double mole = 1.;
7 static constexpr double candela = 1.;
8 static constexpr double radian = 1.;
9 static constexpr double steradian = 1.;

All other units are derived from the base ones:

1 static constexpr double centimeter = 10. * millimeter;
2 static constexpr double centimeter2 = centimeter * centimeter;
3 static constexpr double centimeter3 = centimeter * centimeter * centimeter;
4

5 static constexpr double meter = 1000. * millimeter;
6 static constexpr double meter2 = meter * meter;
7 static constexpr double meter3 = meter * meter * meter;
8

9 static constexpr double kilometer = 1000. * meter;
10 static constexpr double kilometer2 = kilometer * kilometer;
11 static constexpr double kilometer3 = kilometer * kilometer * kilometer;
12

13 static constexpr double kilogram = joule * second * second / (meter * meter);

23

2 Basics

One can find all units definitions in the file DDParsers/include/Evaluator/DD4hepUnits.h
in the DD4hep source directory. All units are part of the dd4hep namespace. The reader
might observe that the units convention is very close to the one used in ROOT/TGeo with
the notable exception that in the latter case degree is set to 1 instead of radian.

2.7.1 Input data with units

The user must use units to define data which is to be used by DD4hep:

1 double length = 5*dd4hep::cm;
2 double time = 20*dd4hep::ns;
3 double energy = 500*dd4hep::GeV;

DD4hep assumes that this convention for the units is respected, in order to assure independence.
If units are not specified in the client application, data are implicitly treated in internal DD4hep
units. This practice is however severely discouraged, as the base definition of units
in DD4hep might change in a later version!

Be aware that DD4hep exposes to the user in many places underlying interfaces of Geant4, in
such cases the user needs to use the Geant4/CLHEP system of units to interact.

2.7.2 Output data with units

When processing output data from DD4hep, it is imperative to cast the unit before forwarding
the data to a third party program. To do so, it is sufficient to divide the data by the
corresponding unit:

1 cout << length / dd4hep::cm << " cm";
2 cout << time / dd4hep::ns << " ns";
3 cout << energy / dd4hep::GeV << " GeV";

DD4hep assumes that this convention for the units is respected, in order to assure independence.
If units are not cast in the client application, DD4hep return values in internal units. This
practice is however severely discouraged, as the base definition of units in DD4hep
might change in a later version!

Be aware that DD4hep exposes to the user in many places underlying interfaces of Geant4, in
such cases the user needs to divide the return value of such interface by the Geant4/CLHEP
system of units:

1 Geant4Calorimeter::Hit* hit;
2 cout << hit->position.x() / CLHEP::mm << " mm";

Not casting the unit, and assuming implicit DD4hep units, would lead to a wrong result.

24

2.8 Material Description

2.7.3 Units in namespaces

A very common scenario is that users need to handle in the same source code data from several
different systems of units, like Geant4/CLHEP, DD4hep or others. DD4hep units are stored
in the namespace dd4hep whilst Geant4/CLHEP units behavior depends on which units file
the user includes:

• G4SystemOfUnits.hh the units are directly in the top level namespace

• CLHEP/Units/SystemOfUnits.h the units are inside the CLHEP:: namespace

It is imperative to keep in mind that for instance mm from DD4hepUnits.h takes precedence
over mm from G4SystemOfUnits.hh inside the dd4hep namespace. The user is advised to
always explicitly state which unit from which namespace is used. The following example code
compiles without error:

1 #include <G4SystemOfUnits.hh>
2 namespace dd4hep {
3 Geant4Calorimeter::Hit* hit;
4 cout << hit->position.x() / mm << " mm";
5 }

however it is logically wrong, as position will be cast to DD4hep mm instead of Geant4 mm. It is
considered good practice to use CLHEP/Units/SystemOfUnits.h without using namespace
CLHEP; and not rely at all on G4SystemOfUnits.hh whilst writing code that interacts with
DD4hep.

2.8 Material Description

Materials are needed by logical volumes. They are defined as isotopes, elements or mixtures.
Elements can optionally be composed of isotopes. Composition is always done by specifying
the fraction of the mass. Mixtures can be composed of elements or other mixtures. For a
mixture the user can specify composition either by number of atoms or by fraction of mass.
The materials sub-tree in section 2.6 shows the representation of an element, a simple material
and a composite material in the XML format identical to GDML [10]. The snippet below shows
how to define new material instances:

1 <materials>
2 ...
3 <!-- (1) The description of an atomic element or isotope -->
4 <element Z="30" formula="Zn" name="Zn" >
5 <atom type="A" unit="g/mol" value="65.3955" />
6 </element>
7 <!-- (2) A composite material -->
8 <material name="Kapton">
9 <D value="1.43" unit="g/cm3" />

10 <composite n="22" ref="C"/>
11 <composite n="10" ref="H" />
12 <composite n="2" ref="N" />
13 <composite n="5" ref="O" />

25

2 Basics

14 </material>
15 <!-- (3) A material mixture -->
16 <material name="PyrexGlass">
17 <D type="density" value="2.23" unit="g/cm3"/>
18 <fraction n="0.806" ref="SiliconOxide"/>
19 <fraction n="0.130" ref="BoronOxide"/>
20 <fraction n="0.040" ref="SodiumOxide"/>
21 <fraction n="0.023" ref="AluminumOxide"/>
22 </material>
23 ...
24 </materials>

The <materials> sub-tree contains additional materials, which are not contained in the
default materials tables. The snippet above shows different kinds of materials:

1. Atomic elements as they are in the periodic table. The number of elements is finite. It
is unlikely any client will have to extend the known elements.

2. Composite materials, which consists of one or several elements forming a molecule. These
materials have a certain density under normal conditions described in the child element D.
For each composite the attribute ref denotes the element type by name, the attribute
n denotes the atomic multiplicity. Typically each of the elements in (1) also forms such a
material representing objects which consist of pure material like e.g. iron magnet yokes
or copper wires.

3. Last there are mixtures of composite materials to describe for example alloys, solutions
or other mixtures of solid materials. This is the type of material used to actually
create mechanical structures forming the assembly of an experiment. Depending on the
manufacturing these materials have a certain density (D) and are composed of numerous
molecules contributing to the resulting material with a given fraction. The sum of all
fractions (attribute n) is 1.0.

“Real” materials i.e. those you can actually touch are described in TGeo by the class
TGeoMedium. 1. Materials are not constructed by any client. Materials and elements are either
already present in the the corresponding tables of the ROOT geometry package or they are
added during the interpretation of the XML input. Clients access the description of material
using the Detector interface.

2.9 Shapes

Shapes are abstract objects with a bounding surface and fixed dimensions. There are primitive,
atomic shapes and complex boolean shapes as shown in Figure 2.1. The shapes have accessors
for the most basic quantities to allow intrinsic access to the geometrical properties. Not all
properties offered by TGeo are exposed. Other properties of the corresponding TGeo object
can be accessed using the overloaded operator->() of the handle object. TGeo and similarly

1Typical beginner’s mistake: Do not mix up the two classes TGeoMaterial and TGeoMedium! The material to
define volumes is of type TGeoMedium, which also includes the description of the material’s finish.

26

2.9 Shapes

Figure 2.1: Extensions may be attached to common Detector Elements which extend the
functionality of the common DetElement class and support e.g. caching of pre-
computed values.

Geant4 offer a whole palette of primitive shapes, which can be used to construct more complex
shapes:

• Box shape represented by the TGeoBBox class. To create a new box object call one of
the following constructors:

1 /// Constructor to be used when creating an anonymous new box object
2 Box(double x, double y, double z);
3 /// Constructor to be used when creating an anonymous new box object
4 template<typename X, typename Y, typename Z> Box(const X& x, const Y& y,

const Z& z);↪→

5

6 /// Access half "length" of the box
7 double x() const;
8 /// Access half "width" of the box
9 double y() const;

10 /// Access half "depth" of the box
11 double z() const;

• Sphere shape represented by the TGeoSphere class. To create a new sphere object call
one of the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

27

2 Basics

2 Sphere(double rmin, double rmax,
3 double startTheta= 0.0, double endTheta = M_PI,
4 double startPhi = 0.0, double endPhi = 2. * M_PI);
5 /// Constructor to create a new identified object with attribute

initialization↪→

6 Sphere(const std::string& nam, double rmin, double rmax,
7 double startTheta= 0.0, double endTheta = M_PI,
8 double startPhi = 0.0, double endPhi = 2. * M_PI);
9

10 /// Accessor: start-phi value
11 double startPhi() const;
12 /// Accessor: end-phi value
13 double endPhi() const;
14 /// Accessor: start-theta value
15 double startTheta() const;
16 /// Accessor: end-theta value
17 double endTheta() const;
18 /// Accessor: r-min value
19 double rMin() const;
20 /// Accessor: r-max value
21 double rMax() const;

• Cone shape represented by the TGeoCone class. To create a new cone object call one of
the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

2 Cone(double z,double rmin1,double rmax1,double rmin2,double rmax2);
3 template<typename Z, typename RMIN1, typename RMAX1, typename RMIN2, typename

RMAX2>↪→

4 Cone(const Z& z, const RMIN1& rmin1, const RMAX1& rmax1, const RMIN2& rmin2,
const RMAX2& rmax2);↪→

5

6 /// Accessor: delta-z value
7 double dZ() const;
8 /// Accessor: r-min-1 value
9 double rMin1() const;

10 /// Accessor: r-min-2 value
11 double rMin2() const;
12 /// Accessor: r-max-1 value
13 double rMax1() const;
14 /// Accessor: r-max-2 value
15 double rMax2() const;

• ConeSegment shape represented by the TGeoConeSeg class. To create a new cone segment
object call one of the following constructors:

1 /// Constructor to create a new ConeSegment
2 ConeSegment(double dz, double rmin1, double rmax1, double rmin2, double rmax2,

double phi1=0.0, double phi2=2.0*M_PI);↪→

3 /// Constructor to create a new named ConeSegment object
4 ConeSegment(const std::string& nam, double dz, double rmin1, double rmax1,

28

2.9 Shapes

5 double rmin2, double rmax2, double startPhi = 0.0, double endPhi
= 2.0 * M_PI);↪→

6

7 /// Accessor: start-phi value
8 double startPhi() const;
9 /// Accessor: end-phi value

10 double endPhi() const;
11 /// Accessor: delta-z value
12 double dZ() const;
13 /// Accessor: r-min-1 value
14 double rMin1() const;
15 /// Accessor: r-min-2 value
16 double rMin2() const;
17 /// Accessor: r-max-1 value
18 double rMax1() const;
19 /// Accessor: r-max-2 value
20 double rMax2() const;

• Polycone shape represented by the TGeoPcon class. To create a new polycone object
call one of the following constructors:

1 /// Constructor to create a new polycone object
2 Polycone(double start, double delta);
3 followed by a call to:
4 void addZPlanes(const std::vector<double>& rmin,
5 const std::vector<double>& rmax,
6 const std::vector<double>& z);
7 /// Constructor to create a new polycone object. Add at the same time all Z

planes↪→

8 Polycone(double start, double delta,
9 const std::vector<double>& rmin,

10 const std::vector<double>& rmax,
11 const std::vector<double>& z);
12

13 /// Accessor: start-phi value
14 double startPhi() const;
15 /// Accessor: delta-phi value
16 double deltaPhi() const;
17 /// Accessor: z value
18 double z(int which) const;
19 /// Accessor: r-min value
20 double rMin(int which) const;
21 /// Accessor: r-max value
22 double rMax(int which) const;
23 /// Accessor: vector of z-values for Z-planes value
24 std::vector<double> zPlaneZ() const;
25 /// Accessor: vector of rMin-values for Z-planes value
26 std::vector<double> zPlaneRmin() const;
27 /// Accessor: vector of rMax-values for Z-planes value
28 std::vector<double> zPlaneRmax() const;

• TubeSegment shape represented by the TGeoTubeSeg class. To create a new tube

29

http://root.cern.ch/root/html/TGeoTubeSeg.html

2 Basics

segment object call one of the following constructors:

1 Tube(double rmin, double rmax, double z, double endPhi=2*M_PI)
2 Tube(double rmin, double rmax, double z, double startPhi, double endPhi)
3

4 template<typename RMIN, typename RMAX, typename Z, typename ENDPHI>
5 Tube(const RMIN& rmin, const RMAX& rmax, const Z& z, const ENDPHI& endPhi)
6

7 template<typename RMIN, typename RMAX, typename Z, typename STARTPHI,
typename ENDPHI>↪→

8 Tube(const std::string& name, const RMIN& rmin, const RMAX& rmax, const Z& z,
9 const STARTPHI& startPhi, const ENDPHI& endPhi)

10

11 /// Accessor: start-phi value
12 double startPhi() const;
13 /// Accessor: end-phi value
14 double endPhi() const;
15 /// Accessor: delta-z value
16 double dZ() const;
17 /// Accessor: r-min value
18 double rMin() const;
19 /// Accessor: r-max value
20 double rMax() const;

• CutTube shape represented by the TGeoCtub class. To create a new cut tube segment
object call one of the following constructors:

1 /// Constructor to create a new cut-tube object with attribute initialization
2 CutTube(double rmin, double rmax, double dz, double startPhi, double endPhi,
3 double lx, double ly, double lz, double tx, double ty, double tz);
4 /// Constructor to create a new identifiable cut-tube object with attribute

initialization↪→

5 CutTube(const std::string& name,
6 double rmin, double rmax, double dz, double startPhi, double endPhi,
7 double lx, double ly, double lz, double tx, double ty, double tz);
8

9 /// Accessor: start-phi value
10 double startPhi() const;
11 /// Accessor: end-phi value
12 double endPhi() const;
13 /// Accessor: delta-z value
14 double dZ() const;
15 /// Accessor: r-min value
16 double rMin() const;
17 /// Accessor: r-max value
18 double rMax() const;
19 /// Accessor: lower normal vector of cut plane
20 std::vector<double> lowNormal() const;
21 /// Accessor: upper normal vector of cut plane
22 std::vector<double> highNormal() const;

• EllipticalTube shape represented by the TGeoEltu class. To create a new elliptical

30

http://root.cern.ch/root/html/TGeoCtub.html
http://root.cern.ch/root/html/TGeoEltu.html

2.9 Shapes

tube segment object call one of the following constructors:

1 /// Constructor to create a new anonymous tube object with attribute
initialization↪→

2 EllipticalTube(double a, double b, double dz);
3 /// Constructor to create a new identified tube object with attribute

initialization↪→

4 EllipticalTube(const std::string& nam, double a, double b, double dz);
5

6 /// Accessor: delta-z value
7 double dZ() const;
8 /// Accessor: a value (semi axis along x)
9 double a() const;

10 /// Accessor: b value (semi axis along y)
11 double b() const;

• Trapezoid shape represented by the TGeoTrd2 class. To create a new trapezoid object
call one of the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

2 Trapezoid(double x1, double x2, double y1, double y2, double z);
3 /// Constructor to create a new anonymous object with attribute

initialization↪→

4 template <typename X1,typename X2,typename Y1,typename Y2,typename Z>
5 Trd2(X1 x1, X2 x2, Y1 y1, Y2 y2, Z z);
6 /// Constructor to create a new identified object with attribute

initialization↪→

7 Trd2(const std::string& nam, double x1, double x2, double y1, double y2,
double z);↪→

8 /// Constructor to create a new identified object with attribute
initialization↪→

9 template <typename X1,typename X2,typename Y1,typename Y2,typename Z>
10 Trd2(const std::string& nam, X1 x1, X2 x2, Y1 y1, Y2 y2, Z z);
11

12 /// Accessor: delta-x1 value
13 double dX1() const;
14 /// Accessor: delta-x2 value
15 double dX2() const;
16 /// Accessor: delta-y1 value
17 double dY1() const;
18 /// Accessor: delta-y2 value
19 double dY2() const;
20 /// Accessor: delta-z value
21 double dZ() const;

• Trap shape represented by the TGeoTrap class. To create a new trap object call one of
the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

2 Trap(double z,double theta,double phi,
3 double y1,double x1,double x2,double alpha1,

31

http://root.cern.ch/root/html/TGeoTrap.html

2 Basics

4 double y2,double x3,double x4,double alpha2);
5 /// Constructor to create a new anonymous object for right angular wedge from

STEP (Se G4 manual for details)↪→

6 Trap(double pz, double py, double px, double pLTX);
7

8 /// Accessor: phi value
9 double phi() const;

10 /// Accessor: theta value
11 double theta() const;
12 /// Angle between centers of x edges and y axis at low z
13 double alpha1() const;
14 /// Angle between centers of x edges and y axis at low z
15 double alpha2() const;
16 /// Half length in x at low z and y low edge
17 double bottomLow1() const;
18 /// Half length in x at high z and y low edge
19 double bottomLow2() const;
20 /// Half length in x at low z and y high edge
21 double topLow1() const;
22 /// Half length in x at high z and y high edge
23 double topLow2() const;
24 /// Half length in y at low z
25 double high1() const;
26 /// Half length in y at high z
27 double high2() const;
28 /// Half length in dZ
29 double dZ() const;

• Torus shape represented by the TGeoTorus class. To create a new torus object call
one of the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

2 Torus(double r, double rmin, double rmax, double phi=M_PI, double
delta_phi=2.*M_PI);↪→

3

4 /// Accessor: start-phi value
5 double startPhi() const;
6 /// Accessor: delta-phi value
7 double deltaPhi() const;
8

9 /// Accessor: r value (torus axial radius)
10 double r() const;
11 /// Accessor: r-min value (inner radius)
12 double rMin() const;
13 /// Accessor: r-max value (outer radius)
14 double rMax() const;

• Paraboloid shape represented by the TGeoParaboloid class. To create a new paraboloid
object call one of the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

32

http://root.cern.ch/root/html/TGeoTorus.html
http://root.cern.ch/root/html/TGeoParaboloid.html

2.9 Shapes

2 Paraboloid(double r_low, double r_high, double delta_z);
3

4 /// Accessor: delta-z value
5 double dZ() const;
6 /// Accessor: r-min value
7 double rLow() const;
8 /// Accessor: r-max value
9 double rHigh() const;

• Hyperboloid shape represented by the TGeoHype class. To create a new hyperboloid
object call one of the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

2 Hyperboloid(double rin, double stin, double rout, double stout, double dz);
3 /// Constructor to create a new identified object with attribute

initialization↪→

4 Hyperboloid(const std::string& nam, double rin, double stin, double rout,
double stout, double dz);↪→

5

6 /// Accessor: delta-z value
7 double dZ() const;
8 /// Accessor: r-min value
9 double rMin() const;

10 /// Accessor: r-max value
11 double rMax() const;
12 /// Stereo angle for inner surface
13 double stereoInner() const;
14 /// Stereo angle for outer surface
15 double stereoOuter() const;

• PolyhedraRegular shape represented by the TGeoPgon class. To create a new polyhedron
object call one of the following constructors:

1 /// Constructor to create a new object. Phi(start)=0, deltaPhi=2PI, Z-planes
at +-zlen/2↪→

2 PolyhedraRegular(int nsides, double rmin, double rmax, double zlen);
3 /// Constructor to create a new object. Phi(start)=0, deltaPhi=2PI, Z-planes

at zplanes[0],[1]↪→

4 PolyhedraRegular(int nsides, double rmin, double rmax, double zplanes[2]);
5 /// Constructor to create a new object with phi_start, deltaPhi=2PI, Z-planes

at +-zlen/2↪→

6 PolyhedraRegular(int nsides, double phi_start, double rmin, double rmax,
double zlen);↪→

7

8 /// Accessor: Number of edges
9 int numEdges() const;

10 /// Accessor: start-phi value
11 double startPhi() const;
12 /// Accessor: delta-phi value
13 double deltaPhi() const;
14

33

http://root.cern.ch/root/html/TGeoHype.html

2 Basics

15 /// Accessor: r-min value
16 double z(int which) const;
17 /// Accessor: r-min value
18 double rMin(int which) const;
19 /// Accessor: r-max value
20 double rMax(int which) const;
21

22 /// Accessor: vector of z-values for Z-planes value
23 std::vector<double> zPlaneZ() const;
24 /// Accessor: vector of rMin-values for Z-planes value
25 std::vector<double> zPlaneRmin() const;
26 /// Accessor: vector of rMax-values for Z-planes value
27 std::vector<double> zPlaneRmax() const;

• Polyhedra shape represented by the TGeoPgon class. To create a new generic polyhedron
object call one of the following constructors:

1 /// Constructor to create a new object. Phi(start), deltaPhi, Z-planes at
specified positions↪→

2 Polyhedra(int nsides, double start, double delta, const std::vector<double>&
z, const std::vector<double>& r);↪→

3 /// Constructor to create a new object. Phi(start), deltaPhi, Z-planes at
specified positions↪→

4 Polyhedra(int nsides, double start, double delta,
5 const std::vector<double>& z, const std::vector<double>& rmin,

const std::vector<double>& rmax)↪→

6

7 /// Accessor: Number of edges
8 int numEdges() const;
9 /// Accessor: start-phi value

10 double startPhi() const;
11 /// Accessor: delta-phi value
12 double deltaPhi() const;
13

14 /// Accessor: z value
15 double z(int which) const;
16 /// Accessor: r-min value
17 double rMin(int which) const;
18 /// Accessor: r-max value
19 double rMax(int which) const;
20

21 /// Accessor: vector of z-values for Z-planes value
22 std::vector<double> zPlaneZ() const;
23 /// Accessor: vector of rMin-values for Z-planes value
24 std::vector<double> zPlaneRmin() const;
25 /// Accessor: vector of rMax-values for Z-planes value
26 std::vector<double> zPlaneRmax() const;

• ExtrudedPolygon shape represented by the TGeoXtru class. To create a new extruded
polygon object call one of the following constructors:

1 /// Constructor to create a new object.

34

2.9 Shapes

2 ExtrudedPolygon(const std::vector<double> & pt_x, const std::vector<double>
& pt_y,↪→

3 const std::vector<double> & sec_z, const std::vector<double>
& sec_x, const std::vector<double> & sec_y,↪→

4 const std::vector<double> & zscale);
5 /// Constructor to create a new identified object.
6 ExtrudedPolygon(const std::string& nam,
7 const std::vector<double> & pt_x, const std::vector<double>

& pt_y,↪→

8 const std::vector<double> & sec_z, const std::vector<double>
& sec_x, const std::vector<double> & sec_y,↪→

9 const std::vector<double> & zscale);
10

11 /// Access vector of x parameters of the various vertices
12 std::vector<double> x() const;
13 /// Access vector of x parameters of the various vertices
14 std::vector<double> y() const;
15 /// Access vector of z-values of the z plane parameters
16 std::vector<double> z() const;
17 /// Access vector of x-offsets of the z plane parameters
18 std::vector<double> zx() const;
19 /// Access vector of y-offsets of the z plane parameters
20 std::vector<double> zy() const;
21 /// Access vector of z-scale parameters
22 std::vector<double> zscale() const;

• EightPointSolid shape represented by the TGeoArb8 class. To create a generic solid
defined by eight vertices call one of the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

2 EightPointSolid(double dz, const double* vertices);
3 /// Constructor to create a new identified object with attribute

initialization↪→

4 EightPointSolid(const std::string& nam, double dz, const double* vertices);
5

6 /// Accessor: delta-z value
7 double dZ() const;
8 /// Accessor: all vertices as STL vector
9 std::vector<double> vertices() const;

10 /// Accessor: single vertex
11 std::pair<double, double> vertex(int which) const;

• TessellatedSolid shape represented by the TGeoTessellated class. To create a generic
solid defined by eight vertices call one of the following constructors:

1 /// Constructor to create a new anonymous object with attribute
initialization↪→

2 TessellatedSolid(int num_facets);
3 /// Constructor to create a new identified object with attribute

initialization↪→

4 TessellatedSolid(const std::vector<Vertex_t>& vertices);

35

2 Basics

5 /// Constructor to create a new anonymous object with attribute
initialization↪→

6 TessellatedSolid(const std::string& nam, int num_facets);
7 /// Constructor to create a new identified object with attribute

initialization↪→

8 TessellatedSolid(const std::string& nam, const std::vector<Vertex_t>&
vertices);↪→

9

10 /// Add new facet to the shape
11 bool addFacet(const Vertex_t& pt0, const Vertex_t& pt1, const Vertex_t& pt2)

const;↪→

12 /// Add new facet to the shape
13 bool addFacet(const Vertex_t& pt0, const Vertex_t& pt1, const Vertex_t& pt2,

const Vertex_t& pt3) const;↪→

14 /// Add new facet to the shape. Call only if the tessellated shape was
constructed with vertices↪→

15 bool addFacet(const int pt0, const int pt1, const int pt2) const;
16 /// Add new facet to the shape. Call only if the tessellated shape was

constructed with vertices↪→

17 bool addFacet(const int pt0, const int pt1, const int pt2, const int pt3)
const;↪→

Tessellated shapes play an essential role to support reading Computer Aided Design files
in DD4hep. Such support is implemented in the DD4hep subpackage DDCAD.

Besides the primitive shapes three types of boolean shapes (described in TGeo by the
TGeoCompositeShape class) are supported:

• UnionSolid objects representing the union,

• IntersectionSolid objects representing the intersection,

• SubtractionSolid objects representing the subtraction,

of two other primitive or complex shapes. To build a boolean shape, the second shape
is transformed in 3-dimensional space before the boolean operation is applied. The 3D
transformations are described by objects from the ROOT::Math library and are supplied at
construction time. Such a transformation as shown in the code snippet below may be

• The identity transformation. Then no transformation object needs to be provided (see
line 2).

• A translation only described by a Position object (see line 4)

• A 3-fold rotation first around the Z-axis, then around the Y-axis and finally around
the X-axis. For transformation operations of this kind a RotationZYX object must be
supplied (see line 6).

• A generic 3D rotation matrix should be applied to the second shape. Then a Rotation3D
object must be supplied (see line 8).

• Finally a generic 3D transformation (translation+rotation) may be applied using a
Transform3D object (see line 10).

36

2.9 Shapes

All three boolean shapes have constructors as shown here for the UnionSolid:

1 /// Constructor to create a new object. Position is identity, Rotation is
identity-rotation!↪→

2 UnionSolid(const Solid& shape1, const Solid& shape2);
3 /// Constructor to create a new object. Placement by position, Rotation is

identity-rotation!↪→

4 UnionSolid(const Solid& shape1, const Solid& shape2, const Position& pos);
5 /// Constructor to create a new object. Placement by a RotationZYX within the

mother↪→

6 UnionSolid(const Solid& shape1, const Solid& shape2, const RotationZYX& rot);
7 /// Constructor to create a new object. Placement by a generic rotation within

the mother↪→

8 UnionSolid(const Solid& shape1, const Solid& shape2, const Rotation3D& rot);
9 /// Constructor to create a new object. Placement by a generic transformation

within the mother↪→

10 UnionSolid(const Solid& shape1, const Solid& shape2, const Transform3D& pos);

37

2 Basics

2.9.1 Shape factories

Sometimes it is useful to create shapes in an “abstract” way e.g. to define areas in the detector.
To create such shapes a factory method was implemented, which allows to create a valid shape
handle given a valid XML element providing the required attributes. The factory methods are
invoked using from XML elements of the following form:

1 <some_element type="shape-type" args>

The shape is then constructed using the XML component object:

1 #include "XML/Helper.h"
2

3 xml_h e = <shape-element>;
4 Box box = xml_comp_t(e).createShape();
5 if (!box.isValid()) { /* ...handle error ... */ }

The required arguments for the various shapes are then:

• For a Box:

1 <some_element type="Box" x="x-value" y="y-value" z="z-value"/>

fulfilling a constructor of the type: Box(dim.dx(), dim.dy(), dim.dz()).

• For a Sphere the following constructor must be fulfilled:

1 Sphere(e.rmin(0), e.rmax(), e.starttheta(0), e.endtheta(), e.startphi(0),
e.endphi());↪→

The corresponding XML snippet looks like this:

1 <some_element type="Sphere" rmin="value" rmax="value" starttheta="value"
endtheta="value" startphi="value" endphi="value"/>↪→

where the above default values for the XML attributes rmin=0, starttheta=0,
endtheta=π, startphi=0, endphi=2 × π.

• For a Cone the following constructor must be fulfilled:

1 double rmi1 = e.rmin1(0), rma1 = e.rmax1();
2 Cone(e.z(0), rmi1, rma1, e.rmin2(rmi1), e.rmax2(rma1));

The corrsponding XML snippet looks like this:

1 <some_element type="Cone" z="value" rmin1="value" rmax1="value"
rmin2="value" rmax2="value"/>↪→

where the above default values for the XML attributes rmin1=0, rmin2=rmin1,
rmax2=rmax1.

• For a ConeSegment the following constructor must be fulfilled:

38

2.9 Shapes

1 ConeSegment(e.dz(), e.rmin1(0), e.rmax1(), e.rmin2(), e.rmax2(), e.startphi(),
e.deltaphi())↪→

where the above default values for the XML attributes rmin1=0, rmin2=0, rmax2=rmax1,
startphi=0 and deltaphi=2 × π are used if not explicitly stated in the XML element e.
The corrsponding XML snippet looks like this:

1 <some_element type="ConeSegment" rmin1="value" rmax="value" rmin2="value"
rmax2="value" dz="value" startphi="value" deltaphi="value"/>↪→

• For a Polycone:
1 <some_element type="Polycone" start="start-phi-value"

deltaphi="delta-phi-value">↪→

2 <zplane z="z-value" rmin="rmin-value" rmax="rmax-value"/>
3 <zplane z="z-value" rmin="rmin-value" rmax="rmax-value"/>
4 any number of Z-planes
5 <zplane z="z-value" rmin="rmin-value" rmax="rmax-value"/>
6 </some_element>

where the above default values for the XML attributes startphi=0 and deltaphi=2 × π
and for each of the the z-planes rmin=0 are used if not explicitly stated in the XML
element e.

• For a Tube the constructor is:

1 Tube(e.rmin(0.0), e.rmax(), e.dz(), e.startphi(), e.deltaphi())

The corrsponding XML snippet looks like this:

1 <some_element type="Tube" rmin="value" rmax="value" dz="value"
startphi="value" deltaphi="value"/>↪→

where the defaults are rmin=0, startphi=0 and deltaphi=2 × π.

• For a CutTube the constructor is:

1 CutTube(e.rmin(0.0), e.rmax(), e.dz(), e.phi1(), e.phi2(), e.lx(), e.ly(),
e.lz(), e.tx(), e.ty(), e.tz())↪→

The corrsponding XML snippet looks like this:

1 <some_element type="CutTube" rmin="value" rmax="value" dz="value"
phi1="value" phi2="value"↪→

2 lx="value" ly="value" lz="value" tx="value" ty="value"
tz="value"/>↪→

where the defaults are rmin=0.

• For a EllipticalTube the constructor is:

1 EllipticalTube(e.a(),e.b(),e.dz());

39

2 Basics

The corrsponding XML snippet looks like this:

1 <some_element type="EllipticalTube" dz="value" a="value" b="value"/>

• For a Trap the constructor is: if dz is specified:

1 Trap(e.dz(), e.dy(), e.dx(),_toDouble(_Unicode(pLTX)))

Alternatively, if the tag dz is not present:

1 Trap(e.z(0.0), e.theta(), e.phi(0), e.y1(), e.x1(), e.x2(), e.alpha1(),
e.y2(), e.x3(), e.x4(), e.alpha2())↪→

The corrsponding XML snippet looks like this:

1 <some_element type="Trap" z="value" theta="value" phi="value"
2 y1="value" x1="value" x2="value" alpha1="value"
3 y2="value" x3="value" x4="value" alpha2="value"/>

Defaults are: theta=0, phi=0, alpha1=0, alpha2=0

• For a Trapezoid the constructor is:

1 Trapezoid(e.x1(), e.x2(), e.y(), e.z(0))

The corrsponding XML snippet looks like this:

1 <some_element type="Trapezoid" x1="value" x2="value" y="value" z="value"/>

The Trapezoid is also aliased to Trd2.

• For a simplified Trapezoid, the Trd1 the constructor is:

1 Trd1(e.x1(), e.x2(), e.y1(), e.y2(), e.z(0));

The corrsponding XML snippet looks like this:

1 <some_element type="Trd1" x1="value" x2="value" y1="value" y2="value"
z="value"/>↪→

• For a Torus the constructor is:

1 Torus(e.r(), e.rmin(), e.rmax(), e.startphi(), e.deltaphi())

The corrsponding XML snippet looks like this:

1 <some_element type="Torus" r="value" rmin="value" rmax="value"
startphi="value" deltaphi="value"/>↪→

Defaults are: rmin=0, startphi=π, deltaphi=2 × π.

• For a Sphere the constructor is:

40

2.9 Shapes

1 Sphere(e.rmin(), e.rmax(), e.starttheta(), e.deltatheta(), e.startphi(),
e.deltaphi())↪→

The corrsponding XML snippet looks like this:

1 <some_element type="Sphere" rmin="value" rmax="value"
2 starttheta="value" deltatheta="value" startphi="value"

deltaphi="value"/>↪→

Defaults are: rmin=0, starttheta=0, deltatheta=π, startphi=0, deltaphi=2 × π.

• For a Paraboloid the constructor is:
1 Paraboloid(e.rmin(0), e.rmax(), e.dz())

The corrsponding XML snippet looks like this:

1 <some_element type="Paraboloid" rmin="value" rmax="value" dz="value"/>

Defaults are: rmin=0.

• For a Hyperboloid the constructor is:

1 Hyperboloid(e.rmin(0), e.inner_stereo(), e.rmax(), e.outer_stereo, e.dz())

The corrsponding XML snippet looks like this:

1 <some_element type="Hyperboloid" rmin="value" inner_stereo="value"
rmax="value" outer_stereo=="value" dz="value"/>↪→

• For a PolyhedraRegular the constructor is:

1 PolyhedraRegular(e.numsides(), e.rmin(), e.rmax(), e.dz())

The corrsponding XML snippet looks like this:

1 <some_element type="PolyhedraRegular" numsides="value" rmin="value"
rmax="value" dz="value"/>↪→

• For a generic Polyhedra the constructor is:

1 PolyhedraRegular(e.numsides(), e.rmin(), e.startphi(), e.deltaphi(),
vector<z>, vector<rmin>, vector<rmax>);↪→

The corrsponding XML snippet looks like this:

1 <some_element type="Polyhedra" numsides="value" startphi="value"
deltaphi="value">↪→

2 <plane z="z-value" rmin="rmin-value" rmax="rmax-value"/>
3 <plane z="z-value" rmin="rmin-value" rmax="rmax-value"/>
4 ...
5 <some_element/>

41

2 Basics

• For a generic eight point solid the constructor is:

1 EightPointSolid(e.dz(), vertices);

The corrsponding XML snippet looks like this:

1 <some_element type="EightPointSolid" dz="value">
2 <vertex x="x-value" y="y-value"/>
3 <vertex x="x-value" y="y-value"/>
4 ...exactly 8 vertices in total...
5 <some_element/>

• For a boolean shape the xml snippet is nested and contains 2 shape descriptions:

1 <some_element type="BooleanShape" operation="value">
2 <shapedescription of left hand shape/>
3 <shapedescription of right hand shape/>
4

5 <transformation ...generic transformation description.../>
6 <!-- OR -->
7 <position x="value" y="value" z="value"/>
8 <rotation x="value" y="value" z="value"/>
9 <some_element/>

valid operations are subtraction, union and intersection.

2.10 Volumes and Placements

The detector geometry is described by a hierarchy of volumes and their corresponding place-
ments. Both, the TGeo package and Geant4 [8] are following effectively the same ideas ensuring
an easy conversion from TGeo to Geant4 objects for the simulation application. A volume is
an unplaced solid described in terms of a primitive shape or a boolean operation of solids,
a material and a number of placed sub-volumes (placed volumes) inside. The class diagram
showing the relationships between volumes and placements, solids and materials is shown
in Figure 1.2. It is worth noting, that any volume has children, but no parent or “mother”
volume. This is a direct consequence of the requirement to re-use volumes and place the same
volume arbitrarily often. Only the act of placing a volume defines the relationship to the next
level parent volume. The resulting geometry tree is very effective, simple and convenient to
describe the detector geometry hierarchy starting from the top level volume representing e.g.
the experiment cavern down to the very detail of the detector e.g. the small screw in the
calorimeter. The top level volume is the very only volume without a placement. All geometry
calculations, computations are always performed within the local coordinate system of the
volume. The following example code shows how to create a volume which consists of a given
material and with a shape. The created volume is then placed inside the mother-volume using
the local coordinate system of the mother volume:

42

2.10 Volumes and Placements

1 Volume mother =ampercent
2

3 Material mat (lcdd.material("Iron"));
4 Tube tub (rmin, rmax, zhalf);
5 Volume vol (name, tub, mat);
6 Transform3D tr (RotationZYX(rotz,roty,rotx),Position(x,y,z));
7 PlacedVolume phv = mother.placeVolume(vol,tr);

The volume has the shape of a tube and consists of iron. Before being placed, the daughter
volume is transformed within the mother coordinate system according to the requested
transformation. The example also illustrates how to access Material objects from the
Detector interface.

The Volume class provides several possibilities to declare the required space transformation
necessary to place a daughter volume within the mother:

• to place a daughter volume unrotated at the origin of the mother, the transformation is
the identity. Use the following call to place the daughter:

1 PlacedVolume placeVolume(const Volume& vol) const;

• If the positioning is described by a simple translation, use:

1 PlacedVolume placeVolume(const Volume& vol, const Position& pos) const;

• In case the daughter should be rotated first around the Z-axis, then around the Y-axis
and finally around the X-axis place the daughter using this call:

1 PlacedVolume placeVolume(const Volume& vol, const RotationZYX& rot) const;

• If the full 3-dimensional rotation matrix is known use:

1 PlacedVolume placeVolume(const Volume& vol, const Rotation3D& rot) const;

• for an entirely unconstrained placement place the daughter providing a Transform3D
object:

1 PlacedVolume placeVolume(const Volume& volume, const Transform3D& tr) const;

For more details of the Volume and the PlacedVolume classes please see the header file
Volumes.h.

One volume like construct is special: the assembly constructs. Assemblies are volumes without
shapes. The “assembly” shape does not own a own surface by itself, but rather defines its
surface and bounding box from the contained children. In this corner also the implementation
concepts between TGeo and Geant4 diverge. Whereas TGeo handles assemblies very similar
to real volumes, in Geant4 assemblies are purely artificial and disappear at the very moment
volumes are placed.

43

2 Basics

2.11 Detector Elements

Detector elements (class DetElement) are entities which represent subdetectors or sizable
parts of a subdetector. As shown in Figure 2.2, a DetElement instance has the means to
provide to clients information about

• generic properties like the detector type or the path within the DetElements hierarchy:

1 /// Access detector type (structure, tracker, calorimeter, etc.).
2 std::string type() const;
3 /// Path of the detector element (not necessarily identical to placement

path!)↪→

4 std::string path() const;

• the detector hierarchy by exposing its children. The hierarchy may be accessed with the
following API:

1 /// Add new child to the detector structure
2 DetElement& add(DetElement sub_element);
3 /// Access to the list of children
4 const Children& children() const;
5 /// Access to individual children by name
6 DetElement child(const std::string& name) const;
7 /// Access to the detector element's parent
8 DetElement parent() const;

• its placement within the overall experiment if it represents an entire subdetector or its
placement with respect to its parent if the DetElement represents a part of a subdetector.
The placement path is the fully qualified path of placed volumes from the top level
volume to the placed detector element.

1 /// Access to the full path to the placed object
2 std::string placementPath() const;
3 /// Access to the physical volume of this detector element

Figure 2.2: The basic layout of the DetElement class aggregating all data entities necessary
to process data.

44

2.12 Sensitive Detectors

4 PlacedVolume placement() const;
5 /// Access to the logical volume of the daughter placement
6 Volume volume() const;

• information about the environmental conditions etc. (conditions):

1 /// Access to the conditions information
2 Conditions conditions() const;

• convenience information such as cached transformations to/from the top level volume,
to/from the parent DetElement and to/from another DetElement in the hierarchy above:

1 /// Transformation from local coordinates of the placed volume to the world
system↪→

2 bool localToWorld(const Position& local, Position& global) const;
3 /// Transformation from world coordinates of the local placed volume

coordinates↪→

4 bool worldToLocal(const Position& global, Position& local) const;
5

6 /// Transformation from local coordinates of the placed volume to the
parent system↪→

7 bool localToParent(const Position& local, Position& parent) const;
8 /// Transformation from world coordinates of the local placed volume

coordinates↪→

9 bool parentToLocal(const Position& parent, Position& local) const;
10

11 /// Transformation from local coordinates of the placed volume to arbitrary
parent system set as reference↪→

12 bool localToReference(const Position& local, Position& reference) const;
13 /// Transformation from world coordinates of the local placed volume

coordinates↪→

14 bool referenceToLocal(const Position& reference, Position& local) const;
15

16 /// Set detector element for reference transformations.
17 /// Will delete existing reference transformation.
18 DetElement& setReference(DetElement reference);

• User extension information as described in section 2.3:

1 /// Extend the detector element with an arbitrary structure accessible by
the type↪→

2 template <typename IFACE, typename CONCRETE> IFACE* addExtension(CONCRETE*
c);↪→

3 /// Access extension element by the type
4 template <class T> T* extension() const;

2.12 Sensitive Detectors

Though the concept of sensitive detectors comes from Geant4 and simulation activities, in
DD4hep the sensitive detectors are the client interface to access the readout description (class

45

2 Basics

Readout) with its segmentation of sensitive elements (class Segmentation) and the description
of hit decoders (class IDDescriptors). As shown in Figure 2.4, these object instances are
required when reconstructing data from particle collisions.

Besides the access to data necessary for reconstruction the sensitive detector also hosts Region
setting (class Region and sets of cut limits (class LimitSets) used to configure the Geant4
simulation toolkit. The following code snippet shows the accessors of the SensitiveDetector
class to obtain the corresponding information 2:

1 struct SensitiveDetector: public Ref_t {
2 /// Access the hits collection name
3 const std::string& hitsCollection() const;
4 /// Access readout structure of the sensitive detector
5 Readout readout() const;
6 /// Access to the region setting of the sensitive detector (not mandatory)
7 Region region() const;
8 /// Access to the limit set of the sensitive detector (not mandatory).
9 LimitSet limits() const;

10

11 /// Extend the sensitive detector element with an arbitrary structure
accessible by the type↪→

12 template <typename IFACE, typename CONCRETE> IFACE* addExtension(CONCRETE*
c);↪→

13 /// Access extension element by the type
14 template <class T> T* extension() const;
15 };

Figure 2.3: The structure of DD4hep sensitive detectors.

Sensitive detector objects are automatically creating using the information of the <readout>
section of the XML file if a subdetector is sensitive and references a valid readout entry. In the
detector constructor (or any time later) clients may add additional information to a sensitive
detector object using an extension mechanism similar to the extension mechanism for detector
elements mentioned earlier.

2The methods to set the data are not shown here.

46

2.13 Description of the Readout Structure

Volumes may be shared and reused in several placements. In the parallel hierarchy of detector
elements as shown in Figure 1.3, the detector elements may reference unambiguously the
volumes of their respective placements, but not the reverse. However, the sensitive detector
setup is a single instance per subdetector. Hence it may be referenced by all sensitive Volumes
of one subdetector. In the following chapters the access to the readout structure is described.

2.13 Description of the Readout Structure

The Readout class describes the detailed structure of a sensitive volume. The for example may
be the layout of strips or pixels in a silicon detector i.e. the description of entities which would
not be modeled using individual volumes and placements though this would theoretically
feasible. Each sensitive element is segmented according to the Segmentation object and hits
resulting from energy depositions in the sensitive volume are encoded using the IDDescriptor
object.

Figure 2.4: The basic components to describe the Readout structure of a subdetector.

2.13.1 CellID Descriptors

IDDescriptors define the encoding of sensitive volumes to uniquely identify the location of
the detector response. The encoding defines a bit-field with the length of 64 bits. The first
field is mandatory called system and identifies the subdetector. All other fields define the
other volumes in the hierarchy. The high bits are not necessarily mapped to small daughter
volumes, but may simply identify a logical segmentation such as the strip number within a
wafer of a vertex detector as shown in the following XML snippet:

1 <readouts>
2 <readout name="SiVertexEndcapHits">
3 <id>system:8,barrel:3,layer:4,module:14,sensor:2,side:32:-2,strip:24</id>
4 </readout>
5 <readouts>

These identifiers are the data input to segmentation classes 2.13.2, which define a user
friendly API to en/decode the detector response.

47

2 Basics

2.13.2 Segmentations

Segmentations define the user API to the low level interpretation of the energy deposits in a
subdetector. For technical reasons and partial religious reasons are the segmentation imple-
mentation not part of the DD4hep toolkit, but an independent package call DDSegmentation.
Though the usage is an integral part of DD4hep.

2.13.3 Volume Manager

The VolumeManager is a tool to seek a look-up table of placements of sensitive volumes and
their corresponding unique volume identifier, the cellID. The volume manager analyzes -
once the geometry is closed - the hierarchical tree and stores the various placements in the
hierarchy with respect to their identifiers. In other words the the tree is reused volumes shown
e.g. in Figure 1.3 is degenerated according to the full paths of the various volumes. This use
case is very common to reconstruction and analysis applications whenever a given raw-data
(aka “hit”) element must be related to its geometrical location.

Figure 2.5 shows the design diagram of this component:

To optimize the access of complex subdetector structures, is the volume-identifier map split
and the volumes of each each subdetector is stored in a separate map. This optimization
however is transparent to clients. The following code extract from the header files lists the
main client routines to extract volume information given a known cellID:

1 /// Lookup the context, which belongs to a registered physical volume.
2 Context* lookupContext(VolumeID volume_id) const;
3 /// Lookup a physical (placed) volume identified by its 64 bit hit ID
4 PlacedVolume lookupPlacement(VolumeID volume_id) const;
5 /// Lookup a top level subdetector detector element
6 /// according to a contained 64 bit hit ID
7 DetElement lookupDetector(VolumeID volume_id) const;
8 /// Lookup the closest subdetector detector element in the hierarchy
9 /// according to a contained 64 bit hit ID

10 DetElement lookupDetElement(VolumeID volume_id) const;
11 /// Access the transformation of a physical volume to the world coordinate

system↪→

12 const TGeoMatrix& worldTransformation(VolumeID volume_id) const;

2.13.4 Static Electric and Magnetic Fields

The generic field is described by a structure of any field type (electric or magnetic) with field
components in Cartesian coordinates. The overlay field is the sum of several magnetic of
electric field components and the resulting field vectors are computed by the vector addition
of the individual components. The available components are described in the following. If
necessary new field implementations may be added at any time: they are instantiated when
necessary by the factory mechanism. Fields are described in the compact model within the
<fields> tags the following example shows:

48

2.13 Description of the Readout Structure

Figure 2.5: Extensions may be attached to common Detector Elements which extend the
functionality of the common DetElement class and support e.g. caching of pre-
computed values.

1 <fields>
2 <field name="MyMagnet" type="solenoid" />
3 </fields>

The actual components are defined one by one within the <field> tags.

Constant Electric or Magnetic Fields are defined as follows:

1 <field name="MyMagnet" type="ConstantField" field="electric">
2 <strength x="x-val" y="y-val" z="z-val"/>
3 </field>

The field attribute accepts take the values [electric,magnetic] depending on its nature.

Magnetic Dipoles are defined as follows:

49

2 Basics

1 <field name="MyMagnet" type="DipoleMagnet"
2 rmax="50*cm"
3 zmin="0*cm"
4 zmax="50*cm">
5 <dipole_coeff>1.0*tesla</dipole_coeff>
6 <dipole_coeff>0.1*tesla/pow(cm,1)</dipole_coeff>
7 <dipole_coeff>0.01*tesla/pow(cm,2)</dipole_coeff>
8 </field>

Magnetic Multipole Fields are developed according to their approximation using the multipole
coefficients. The dipole is assumed to be horizontal as it is used for bending beams in large
colliders i.e. the dipole field lines are vertical.

The different field components are given by:

Bnorm
x = cp

e

n
2∑

m=1
(−1)m−1 Cn

xn−2m y2m−1

(n − 2m)!(2m − 1)! ,

Bnorm
y = cp

e

n−1
2∑

m=0
(−1)m Cn

xn−2m−1 y2m

(n − 2m − 1)!(2m)! ,

Bskew
x = cp

e

n−1
2∑

m=0
(−1)m Sn

xn−2m−1 y2m

(n − 2m − 1)!(2m)! ,

Bskew
y = cp

e

n
2∑

m=1
(−1)m Sn

xn−2m y2m−1

(n − 2m)!(2m − 1)! .

With Cn being “normal multipole coefficients” and Sn the “skew multipole coefficients”. The
maximal moment used is the octopole moment. The lower four moments are used to describe
the magnetic field:

• Dipole (n=1):

Bx = S1 ,

By = C1 ,

Bz = constant .

• Quadrupole (n=2):

Bx = C2y + S2x ,

By = C2x − S2y .

• Sextupole (n=3):

Bx = C3xy + S3x2

2 − S3y2

2 ,

By = C3x2

2 − C3y2

2 − S3xy .

50

2.14 Detector Constructors

• Octopole (n=4):

Bx = 1
2C4x2y − C4y3

6 + S4x3

6 − 1
2S4xy2 ,

By = C4x3

6 − 1
2C4xy2 − 1

2S4x2y + S4y3

6 .

The defined field components only apply within the shape ’volume’. If ’volume’ is an invalid
shape (i.e. not defined), then the field components are valid throughout the ’universe’.

The magnetic multipoles are defined as follows:

1 <field name="MyMagnet" type="MultipoleMagnet">
2 <position x="0" y="0" z="0"/>
3 <rotation x="pi" y="0" z="0"/>
4 <shape type="shape-constructor-type" args >
5 <coefficient coefficient="coeff(n=1)" skew="skew(n=1)"/>
6 maximum of 4 coefficients
7 <coefficient coefficient="coeff(n=4)" skew="skew(n=4)"/>
8 </field>

The shape defines the geometrical coverage of the multipole field in the origin (See section 2.9
for details). This shape may then be transformed to the required location in the detector area
using the position and the rotation elements, which define this transformation.

2.14 Detector Constructors

The creation of appropriate detector constructors is the main work of a client defining his own
detector. The detector constructor is a fragment of code in the form of a routine, which return
a handle to the created subdetector DetElement object.

Knowing that detector constructors are the main work items of clients significant effort was
put in place to ease and simplify this procedure as much as possible in order to obtain readable,
still compact code hopefully easy to maintain. The interfaces to all objects, XML accessors,
shapes, volumes etc. which were discussed above were optimized to support this intention.

To illustrate the anatomy of such a constructor the following code originating from an existing
SiD detector concept will be analyzed. The example starts with the XML input data. Further
down this section the code is shown with a detailed description of every relevant line. The
object to be build is a subdetector representing a layered calorimeter, where each layer consists
of a number of slices as shown in the XML snippet. These layers are then repeated a number of
times.

The XML snippet describing the subdetector properties:

1 <detector id="13" name="LumiCal" reflect="true"
type="CylindricalEndcapCalorimeter"↪→

2 readout="LumiCalHits" vis="LumiCalVis" calorimeterType="LUMI">
3 <comment>Luminosity Calorimeter</comment>

51

2 Basics

4 <dimensions inner_r = "LumiCal_rmin" inner_z = "LumiCal_zmin" outer_r =
"LumiCal_rmax" />↪→

5 <layer repeat="20" >
6 <slice material = "TungstenDens24" thickness = "0.271*cm" />
7 <slice material = "Silicon" thickness = "0.032*cm" sensitive = "yes" />
8 <slice material = "Copper" thickness = "0.005*cm" />
9 <slice material = "Kapton" thickness = "0.030*cm" />

10 <slice material = "Air" thickness = "0.033*cm" />
11 </layer>
12 <layer repeat="15" >
13 <slice material = "TungstenDens24" thickness = "0.543*cm" />
14 <slice material = "Silicon" thickness = "0.032*cm" sensitive = "yes" />
15 <slice material = "Copper" thickness = "0.005*cm" />
16 <slice material = "Kapton" thickness = "0.030*cm" />
17 <slice material = "Air" thickness = "0.033*cm" />
18 </layer>
19 </detector>

The C++ code snippet interpreting the XML data and expanding the geometry:

1 #include "DD4hep/DetFactoryHelper.h"
2 #include "XML/Layering.h"
3

4 using namespace std;
5 using namespace dd4hep;
6

7 static Ref_t create_detector(Detector& lcdd, xml_h e, SensitiveDetector sens) {
8 xml_det_t x_det = e;
9 string det_name = x_det.nameStr();

10 bool reflect = x_det.reflect();
11 xml_dim_t dim = x_det.dimensions();
12 double zmin = dim.inner_z();
13 double rmin = dim.inner_r();
14 double rmax = dim.outer_r();
15 double totWidth = Layering(x_det).totalThickness();
16 double z = zmin;
17 Material air = lcdd.air();
18 Tube envelope (rmin,rmax,totWidth,0,2*M_PI);
19 Volume envelopeVol(det_name+"_envelope",envelope,air);
20 int layer_num = 1;
21 PlacedVolume pv;
22

23 // Set attributes of slice
24 for(xml_coll_t c(x_det,_U(layer)); c; ++c) {
25 xml_comp_t x_layer = c;
26 double layerWidth = 0;
27 for(xml_coll_t l(x_layer,_U(slice)); l; ++l)
28 layerWidth += xml_comp_t(l).thickness();
29

30 for(int i=0, m=0, repeat=x_layer.repeat(); i<repeat; ++i, m=0) {
31 double zlayer = z;
32 string layer_name = det_name + _toString(layer_num,"_layer%d");
33 Volume layer_vol(layer_name,Tube(rmin,rmax,layerWidth),air);

52

2.14 Detector Constructors

34

35 for(xml_coll_t l(x_layer,_U(slice)); l; ++l, ++m) {
36 xml_comp_t x_slice = l;
37 double w = x_slice.thickness();
38 string slice_name = layer_name + _toString(m+1,"slice%d");
39 Material slice_mat = lcdd.material(x_slice.materialStr());
40 Volume slice_vol (slice_name,Tube(rmin,rmax,w),slice_mat);
41

42 if (x_slice.isSensitive()) {
43 sens.setType("calorimeter");
44 slice_vol.setSensitiveDetector(sens);
45 }
46 slice_vol.setAttributes(lcdd, x_slice.regionStr(), x_slice.limitsStr(),

x_slice.visStr());↪→

47 pv = layer_vol.placeVolume(slice_vol,
Position(0,0,z-zlayer-layerWidth/2+w/2));↪→

48 pv.addPhysVolID("slice",m+1);
49 z += w;
50 }
51 layer_vol.setVisAttributes(lcdd,x_layer.visStr());
52 Position layer_pos(0,0,zlayer-zmin-totWidth/2+layerWidth/2);
53 pv = envelopeVol.placeVolume(layer_vol,layer_pos);
54 pv.addPhysVolID("layer",layer_num);
55 ++layer_num;
56 }
57 }
58 // Set attributes of slice
59 envelopeVol.setAttributes(lcdd, x_det.regionStr(), x_det.limitsStr(),

x_det.visStr());↪→

60

61 DetElement sdet(det_name,x_det.id());
62 Volume motherVol = lcdd.pickMotherVolume(sdet);
63 PlacedVolume phv =

motherVol.placeVolume(envelopeVol,Position(0,0,zmin+totWidth/2));↪→

64 phv.addPhysVolID("system",sdet.id()).addPhysVolID("barrel",1);
65 sdet.setPlacement(phv);
66 if (reflect) {
67 phv=motherVol.placeVolume(envelopeVol, Transform3D(RotationZ(M_PI),

Position(0,0,-zmin-totWidth/2)));↪→

68 phv.addPhysVolID("system",sdet.id()).addPhysVolID("barrel",2);
69 }
70 return sdet;
71 }
72

73 DECLARE_DETELEMENT(CylindricalEndcapCalorimeter,create_detector);

53

2 Basics

1 The include file DetFactoryHelper.h includes all utilities to extract XML information together
with the appropriate type definition.

4-5 Convenience shortcut to save us a lot of typing.
7 The entry point to the detector constructor. This routine shall be called by the plugin

mechanism.
8 The functionality of the raw XML handle xml_h is rather limited. A simple assignment to a

XML detector object gives us all the functionality we need.
9–10 Extracting the sub-detector name and properties from the xml handle.
11–16 Access the dimension child-element from the XML subtree, access the element’s attributes

and precompute values used later.
17 Retrieve a reference to the “air” material from Detector.
18–19 Construct the envelope volume shaped as a tube made out of air.
24 Now the detector can be built: We loop over all layers types and over each layer type as

often as necessary (attribute: repeat).The XML collection object will return all child elements
of x_detwith a tag-name “layer”. Note the macro _U(layer): When using Xerces-C as
an XML parser, it will expand to the reference to an object containing the unicode value of
the string “layer”. The full list of predefined tag names can be found in the include file
XML/UnicodeValues.h.If a user tag is not part in the precompiled tag list, the corresponding
Unicodestring may be created with the macro _Unicode(layer) or Unicode("layer").

25 Convenience assignment to extract attributes of the layer element.
26–28 Compute total layer width.
30 Create repeat number of layers of the same type.
31-33 Create the named envelope volume with a tube shape containing all slices of this layer.
35-50 Create the different layer-slices with a tube shape and the corresponding material as indicated

in the XML data.
42-45 If the slice is sensitive i.e. is instrumented and supposed to deliver signals from particle

passing, the sensitive detector component of this detector needs to be attached to the slice.
46 Set visualization and Geant4 attributes to the slice volume. If the attributes are not present,

they will be ignored.
47 Now the created slice volume will be placed inside the mother, the layer envelope at the

correct position. This operation results in the creation of a PlacedVolume.
48 It identify uniquely every slice within the layer an identifier (here the number of the created

slice) is attached. This identifier must be present in the bitmap defined by the IDDescriptor
of this subdetector.

52-55 Same as 46-48, but now the created layer volume is placed in the envelope of the entire
subdetector.

59 Set envelope attributes.
61 Construct the main detector element of this subdetector.This will be the unique entry point

to access any information of the subdetector. Note: the subdetector my consist of a hierarchy
of detector elements.For example each layer could be described by its own DetElement and
all layer-DetElement instances being children of the subdetector instance.

62-62 Place the subdetector envelope into its mother (typically the top level (world) volume).
64-65 Add the missing IDDescriptor identifiers to complete the bitmap.
66 Store the placement in the subdetector detector element in order to make it available to later

clients of this DetElement.
67-69 Endcap calorimeters typically are symmetric i.e. an endcap is located on each side of the

barrel. To easy such reflections the entire endcap structure can be copied and placed again.
70 All done. Return the created subdetector element to the caller for registration.
73 Very important: Without the registration of the construction function to the framework,

the corresponding plugin will not be found. The macro has two arguments: firstly the plugin
name which is identical to the detector type in the XML snippet and secondly the function to
be called at construction time.

54

2.15 Tools and Utilities

2.15 Tools and Utilities

2.15.1 Geometry Visualization

Visualizing the geometry is an important tool to debug and validate the constructed detector.
Since DD4hep uses the ROOT geometry package, all visualization tools from ROOT are
automatically supported. This is in the first place the OpenGL canvas of ROOT and all
elaborated derivatives thereof such as event displays etc. Figure 2.6 shows as an example the
subdetector example from the SiD detector design discussed in section 2.14.

Figure 2.6: Geometry visualization using the ROOT OpenGL plugin. To the left the entire
luminosity calorimeter is shown, at the right the detailed zoomed view with clipping
to access the internal layer and slice structure.

The command to create the display is part of the DD4hep release:

1 $> geoDisplay -compact <path to the \texttt{XML} file containing the detector
description>↪→

2

3 DD4hepGeometryDisplay -opt [-opt]
4 -compact <file> Specify the compact geometry file
5 [REQUIRED] At least one compact geo file is required!
6 -build_type <number/string> Specify the build type
7 [OPTIONAL] MUST come immediately after the -compact input.
8 Default for each file is: BUILD_DEFAULT [=1]
9 Allowed values: BUILD_SIMU [=1], BUILD_RECO

[=2] or BUILD_DISPLAY [=3]↪→

10 -destroy [OPTIONAL] Force destruction of the Detector instance
11 before exiting the application
12 -volmgr [OPTIONAL] Load and populate phys.volume manager to

55

2 Basics

13 check the volume ids for duplicates etc.
14 -print <number/string> Specify output level. Default: INFO(=3)
15 [OPTIONAL] Allowed values: VERBOSE(=1), DEBUG(=2),
16 INFO(=3), WARNING(=4), ERROR(=5), FATAL(=6)
17 The lower the level, the more printout...
18 -load_only [OPTIONAL] Dry-run to only load geometry without
19 starting the display.

2.15.2 Geometry Conversion

ROOT TGeo is only one representation of a detector geometry. Other applications may require
other representation. In particular two other are worth mentioning:

• Detector [9] the geometry representation used to simulate the ILC detector design with
the slic application.

• GDML [10] a geometry markup language understood by Geant4 and ROOT.

Both conversions are supported in DD4hep with the geoConverter application:

1 geoConverter -opt [-opt]
2 Action flags: Usage is exclusive, 1 required!
3 -compact2lcdd Convert compact xml geometry to lcdd.
4 -compact2gdml Convert compact xml geometry to gdml.
5 -compact2vis Convert compact xml to visualisation attrs
6

7 -input <file> [REQUIRED] Specify input file.
8 -output <file> [OPTIONAL] Specify output file.
9 if no output file is specified, the output

10 device is stdout.
11 -ascii [OPTIONAL] Dump visualisation attrs in csv format.
12 [Only valid for -compact2vis]

2.15.3 Overlap checking

Overlap checks are an important tool to verify the consistency of the implemented geometrical
design. As in the real world, where overlaps are impossible, also simulated geometries may
not have overlaps. In simulation overlaps tend to create particle reflections possibly leading to
infinite loops.

1 python <install>/DD4hep/bin/checkOverlaps.py --help
2 Usage: checkOverlaps.py [options]
3

4 Check TGeo geometries for overlaps.
5

6 Options:
7 -h, --help show this help message and exit
8 -c <FILE>, --compact=<FILE> Define LCCDD style compact xml input
9 -p <boolean>, --print=<boolean> Print overlap information to standard

output↪→

56

2.15 Tools and Utilities

10 (default:True)
11 -q, --quiet Do not print (disable --print)
12 -t <double number>, --tolerance=<double number>
13 Overlap checking tolerance. Unit is in

[mm].↪→

14 (default:0.1 mm)
15 -o <string>, --option=<string> Overlap checking option ('' or 's')

2.15.4 Geometry checking

Perform extensive geometry checks. For details and up to date information please refer to the
ROOT documentation of the class TGeoManager:

• Member function TGeoManager::CheckGeometry and

• Member function TGeoManager::CheckGeometryFull

1 python <install>DD4hep/bin/checkGeometry.py --help
2 Usage: checkGeometry.py [options]
3

4 TGeo Geometry checking.
5

6 Options:
7 -h, --help show this help message and exit
8 -c <FILE>, --compact=<FILE> Define LCCDD style compact xml input
9 -f <boolean>, --full=<boolean> Full geometry checking

10 -n <integer>, --ntracks=<integer> Number of tracks [requires 'full']
11 -x <double>, --vx=<double> X-position of track origine vertex

[requires 'full']↪→

12 -y <double>, --vy=<double> Y-position of track origine vertex
[requires 'full']↪→

13 -z <double>, --vz=<double> Z-position of track origine vertex
[requires 'full']↪→

14 -o <string>, --option=<string> Geometry checking option default:ob

The full geometry check performs the TGeoManager:CheckGeometryFull following actions:

• if option contains ’o’: Optional overlap checkings (by sampling and by mesh).

• if option contains ’b’: Optional boundary crossing check + timing per volume.

STAGE 1
extensive overlap checking by sampling per volume. Stdout need to be checked by
user to get report, then TGeoVolume::CheckOverlaps(0.01, "s") can be called for
the suspicious volumes.

STAGE 2
normal overlap checking using the shapes mesh - fills the list of overlaps.

57

2 Basics

STAGE 3:
shooting NTRACKS rays from vertex (vx,vy,vz) and counting the total number of
crossings per volume (rays propagated from boundary to boundary until geometry exit).
Timing computed and results stored in a histogram.

STAGE 4:
shooting 1 mil. random rays inside EACH volume and calling FindNextBoundary() +
Safety() for each call. The timing is normalized by the number of crossings computed
at stage 2 and presented as percentage. One can get a picture on which are the most
“burned” volumes during transportation from geometry point of view. Another plot of
the timing per volume vs. number of daughters is produced.

2.15.5 Directional Material Scans

Print the materials on a straight line between the two given points:

1 materialScan
2 usage: print_materials compact.xml x0 y0 z0 x1 y1 z1
3 -> prints the materials on a straight line between the two given points (

unit is cm)↪→

materialScan uses the python bindings provided by Geant4 and may be not always availible.
Alternatively the command print_materials may be used, which does not use the python
binding, but produces less pretty output.

2.15.6 Plugin Test Program

The plugin tester loads a given geometry and the executes a plugin defined at the command
line. The main purpose of this program is to quickly invoke new detector plugins while
developing. The arguments for this program are:

1 geoPluginRun -opt [-opt]
2

3 -plugin <name> [REQUIRED] Plugin to be executed and applied.
4 -input <file> [OPTIONAL] Specify geometry input file.
5 -build_type <number/string> Specify the build type
6 [OPTIONAL] MUST come immediately after the -compact input.
7 Default for each file is: BUILD_DEFAULT [=1]
8 Allowed values: BUILD_SIMU [=1], BUILD_RECO

[=2] or BUILD_DISPLAY [=3]↪→

9 -destroy [OPTIONAL] Force destruction of the LCDD instance
10 before exiting the application
11 -volmgr [OPTIONAL] Load and populate phys.volume manager to
12 check the volume ids for duplicates etc.
13 -print <number/string> Specify output level. Default: INFO(=3)
14 [OPTIONAL] Allowed values: VERBOSE(=1), DEBUG(=2),
15 INFO(=3), WARNING(=4), ERROR(=5), FATAL(=6)
16 The lower the level, the more printout...

58

2.16 Standard Plugins

To invoke plugins using this utility is very simple and any number of plugins may be chained
to produce the required result. This is very convenient e.g. to run tests:

1 $> geoPluginRun -input <compact geometry file> \
2 -plugin <plugin-name-1> <plugin-arg-1> <plugin-arg-2>
3 -plugin <plugin-name-2> <plugin-arg-1> <plugin-arg-2>
4 -plugin <plugin-name-3> <plugin-arg-1> <plugin-arg-2>
5

2.16 Standard Plugins

These plugins are partially used by DD4hep itself and are invoked from therein, but can as
well be initiated from the above mentioned plugin test program.

2.16.1 Geometry Display

This plugin may be used to invoke the geometry display and start the ROOT interpreter:

1 Usage: -plugin DD4hep_GeometryDisplay -arg [-arg]
2 Invoke the ROOT geometry display using the factory mechanism.
3 -detector <string> Top level DetElement path. Default: '/world'
4 -option <string> ROOT Draw option. Default: 'ogl'
5 -level <number> Visualization level [TGeoManager::SetVisLevel]

Default: 4↪→

6 -visopt <number> Visualization option [TGeoManager::SetVisOption]
Default: 1↪→

7 -load Only load the geometry. Do not invoke the display
8 -help Print this help output
9

10 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.2 Execute a Function in a Library

Plugin to invoke a C function in a library. The plugin automatically loads the library and
executes the function. The function may not require arguments. The function is identified by
it’s linker name. Hence, to not need to deal with linker name mangling export such functions
with extern “C”.

1 Usage: -plugin DD4hep_Function -arg [-arg]
2 Execute a function without arguments inside a library.
3 -library <string> Library to be loaded
4 -function <string> name of the entry point to be executed.
5

6 For details see also: DDCore/src/plugins/StandardPlugins.cpp

59

2 Basics

2.16.3 Start the ROOT Interpreter

To trigger the start of the ROOT interpreter, invoke the plugin. Additional argumens are
assumed to be command, which should be evaluated.

1 Usage: -plugin DD4hep_Rint -arg [-arg]
2 Start the ROOT interpreter. Optionally process one or several

commands.↪→

3

4 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.4 Start the DD4hep UI

The DD4hep UI is a mediator to interactively interact more easily with the DD4hep instance
from the ROOT command prompt. See the defintition file DDCore/include/DD4hep/DD4hepUI.h
for details. An instance of the DD4hepUI class is generated and made availible to ROOT by
the global pointer gDD4hepUI. Any argument is ignored.

1 Usage: -plugin DD4hep_InteractiveUI
2

3 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.5 Dump GDML Tables of the TGeoManager

The plugin simply dumps the GDML tables associated to the TGeoManager instance to stdout.
Useful to verify the parsed conent. Any argument is ignored.

1 Usage: -plugin DD4hep_Dump_GDMLTables
2

3 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.6 Dump Optical Surfaces of the TGeoManager

The plugin simply dumps the optical surfaces associated to the TGeoManager instance to
stdout. Useful to verify the parsed conent. Any argument is ignored.

1 Usage: -plugin DD4hep_Dump_OpticalSurfaces
2

3 For details see also: DDCore/src/plugins/StandardPlugins.cpp

60

2.16 Standard Plugins

2.16.7 Dump Skin Surfaces of the TGeoManager

The plugin simply dumps the skin surfaces associated to the TGeoManager instance to stdout.
Useful to verify the parsed conent. Any argument is ignored.

1 Usage: -plugin DD4hep_Dump_SkinSurfaces
2

3 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.8 Dump Border Surfaces of the TGeoManager

The plugin simply dumps the border surfaces associated to the TGeoManager instance to
stdout. Useful to verify the parsed conent. Any argument is ignored.

1 Usage: -plugin DD4hep_Dump_BorderSurfaces
2

3 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.9 Dump the Element/Material Table of the TGeoManager

The plugin dumps all elements stored in the TGeoManager instance to stdout or to file.
Optionally the output can be generated in XML understood by DD4hep in order to e.g. export
the elements used in the apparatus. Useful to verify the parsed conent.

1 Usage: -plugin DD4hep_ElementTable -opt [-opt]
2 -type <string> Output format: text or xml
3 -output <file-name> Output file specifier (xml only)
4

5 For details see also: DDCore/src/plugins/StandardPlugins.cpp

To dump the material table, use the plugin DD4hep_MaterialTable.

2.16.10 Load and Interprete XML file

Load and interprete an XML file with DD4hep. The root tag name of the file defines the factory
name to be called to analyse the content. The optional build type is a flag passed to the
Detector entity and may be used for more detailed interpretation.

1 Usage: -plugin DD4hep_XMLLoader <file-uri> <build-type>
2

3 For details see also: DDCore/src/plugins/StandardPlugins.cpp

61

2 Basics

2.16.11 Load and Interprete XML Element

Interprete a single XML element. The root tag name of the file defines the factory name to be
called to analyse the content. The optional build type is a flag passed to the Detector entity
and may be used for more detailed interpretation. This plugin can only be used, since the
argument to a pointer to an XML::Handle is passed.

1 Usage: -plugin DD4hep_XMLProcessor <pointer-to-xml-element> <build-type>
2

3 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.12 Load and Initialize the DD4hep Volume Manager

To load and initialize the DD4hep volume manager object, use:

1 Usage: -plugin DD4hep_VolumeManager
2

3 For details see also: DDCore/src/plugins/StandardPlugins.cpp

Any argument is ignored. Please note: the detector description must be full initialized before
this plugin may be called. Anything else results in incomplete content.

2.16.13 Dump Detector Description to ROOT file

This plugin saves the full detector description object to a ROOT file including geometry and
structural setup. Please note, that for reading DD4hep is required to resolve the necessary
dictionaries. However, this method may serve to produce well defined snapshots e.g. for mass
production.

1 Usage: -plugin DD4hep_Geometry2ROOT -arg [-arg]
2 -output <string> Output file name.
3

4 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.14 Load Detector Description from ROOT file

Once saved, load the DD4hep detector description into memory.

1 Usage: -plugin DD4hep_RootLoader -arg [-arg]
2 -input <string> Input file name.
3

4 For details see also: DDCore/src/plugins/StandardPlugins.cpp

62

2.16 Standard Plugins

2.16.15 Dump Geometry to ROOT file

The plugin saves the geometry part of the detector description to ROOT. Only ROOT is
required to read this information.

1 Usage: -plugin DD4hep_Geometry2TGeo -arg [-arg]
2 -output <string> Output file name.
3

4 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.16 Dump DetElement/Volume Tree

Dump for verification and debugging the DetElement or Volume tree of the detector description.
Both plugin are very similar, once with emphsis on the ejected DetElement information, once
with emphasis on the geometry information.

1 Usage -plugin DD4hep_DetectorDump / DD4hep_DetectorVolumeDump -arg [-arg]
2

3 --sensitive Process only sensitive volumes.
4 -sensitive dto.
5 --no-sensitive Invert sensitive only flag.
6 -no-sensitive dto.
7 --shapes Print shape information.
8 -shapes dto.
9 --positions Print position information.

10 -positions dto.
11 --materials Print material information.
12 -materials dto.
13 --detector <path> Process elements only if <path> is part of the

DetElement path.↪→

14 -detector <path> dto.
15 -level <number> Maximal depth to be explored by the scan
16 --level <number> dto.
17 -volids Print volume identifiers of placements.
18 --volids dto.
19

20 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.16.17 Fill DetElement Cache

The DetElement instances may cache on demand the transfomattions of their ideal placements
to the world coordinate system. To fill this cache immediately rather than on demand use this
plugin. Depending on the top element passed, this caching mechanism can also be applied to
some sub-detectors.

1 Usage: -plugin DD4hep_DetElementCache -arg [-arg]
2 -detector <string> Top level DetElement path. Default: '/world'
3 --detector <string> dto.

63

2 Basics

4

5 For details see also: DDCore/src/plugins/StandardPlugins.cpp

2.17 Shape and Volume Plugins

Shape plugins can be used to create shapes and volumes using uniquely xml constructs without
the need of extra code. Often useful when describing passive objects of an apparatus. DD4hep
supports all commonly used and supported shapes by TGeo, and allows the abstract creation
of these shapes using the plugin mechanism. We list here the shapes, which are supported
by the plugin mechanism. The creation of shapes can be triggered using any XML element
matching a given pattern. The constructor is accessible as follows:

1 #include <XML/Utilities.h>
2

3 Detector& det = ...;
4 xml::Element element = ...;
5 std::string shape_type = "Box";
6 Solid solid = dd4hep::xml::createShape(description, shape_type, element);

where the XML Element element must supply all required information to actually create the
shape of a given type. To create shapes with the fectory mechanism, the shape constructors
as present in DDCore/inlude/DD4hep/Shapes.h must be met.

2.17.1 Assembly Shape Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-assembly"further xml-attributes not looked at >
2 ... further optional xml-elements not looked at
3 </some-tag>

The name attribute is optional. If present the created TGeoShapeAssembly will be given the
supplied identifier.

2.17.2 Scaled Shape Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-solid" x="1.0" y="2.0" z="3.0" ... further xml-attributes not
looked at >↪→

2 <shape> </shape>
3 ... further optional xml-elements not looked at
4 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier.

64

2.17 Shape and Volume Plugins

• x, y, z are the values of scaling.

• <shape>: some shape descriptor understood by a DD4hep factory.

2.17.3 Box Shape Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-box" x="1.0*cm" y="2.0*cm" z="3.0*cm" ... further
xml-attributes not looked at >↪→

2 ... further optional xml-elements not looked at
3 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier. x, y, z denote the half-side lengths of the created solid.

2.17.4 Half-Space Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-box" ... further xml-attributes not looked at >
2 <point x="1.0*cm" y="2.0*cm" z="3.0*cm"/>
3 <normal x="1.0" y="0.0" z="0.0"/>
4 ... further optional xml-elements not looked at
5 </some-tag>

point and normal are the defining entities for the solid.

2.17.5 Cone Construction

The xml entity ’element’ must either look like the following:

1 <some-tag name="my-cone" z="10*cm" rmin1="1*cm" rmax1="2.cm" rmin2="2*cm"
rmax2="4*cm"↪→

2 ... further xml-attributes not looked at >
3 ... further optional xml-elements not looked at
4 </some-tag>

name is optional, rmin1 = 0, rmin2 = rmin1 have default values if not explicitly set.

65

2 Basics

2.17.6 Polycone Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-polycone" startphi="0*rad" deltaphi="2*pi" ... further
xml-attributes not looked at >↪→

2 <zplane rmin="1.0*cm" rmax="2.0*cm"/>
3 <zplane rmin="2.0*cm" rmax="4.0*cm"/>
4 <zplane rmin="3.0*cm" rmax="6.0*cm"/>
5 <zplane rmin="4.0*cm" rmax="8.0*cm"/>
6 <zplane rmin="5.0*cm" rmax="10.0*cm"/>
7 ... further optional xml-elements not looked at
8 </some-tag>

name is optional, startphi = 0, deltaphi = 2π have default values if not explicitly set.

2.17.7 Cone Segment Construction

This shape implements for historical reasons two alternative constructors, which are automati-
cally recognized depending on the supplied attributes. The xml entity ’element’ must either
look like the following:

1 <some-tag name="my-polycone" rmin1="1*cm" rmax1="2.cm" rmin1="2*cm"
rmax1="3.cm"↪→

2 startphi="0*rad" deltaphi="pi" ... further
xml-attributes not looked at >↪→

3 ... further optional xml-elements not looked at
4 </some-tag>

name is optional, startphi = 0, deltaphi = 2π have default values if not explicitly set.
Otherwise the folowing pattern must be fulfilled (DEPRECATED):

1 <some-tag name="my-polycone" rmin1="1*cm" rmax1="2.cm" rmin1="2*cm"
rmax1="3.cm"↪→

2 phi1="0*rad" phi2="pi" ... further xml-attributes
not looked at >↪→

3 ... further optional xml-elements not looked at
4 </some-tag>

name is optional, phi1 = 0, phi2 = 2π use default values if not explicitly set.

2.17.8 Tube Construction

This shape implements for historical reasons two alternative constructors, which are automati-
cally recognized depending on the supplied attributes. The xml entity ’element’ must either
look like the following:

66

2.17 Shape and Volume Plugins

1 <some-tag name="my-tube" rmin="1*cm" rmax="2.cm"
2 startphi="0*rad" deltaphi="pi" ... further

xml-attributes not looked at >↪→

3 ... further optional xml-elements not looked at
4 </some-tag>

name is optional, startphi = 0, deltaphi = 2π have default values if not explicitly set.
Otherwise the folowing pattern must be fulfilled (DEPRECATED):

1 <some-tag name="my-tube" rmin="1*cm" rmax="2.cm"
2 phi1="0*rad" phi2="pi" ... further xml-attributes not

looked at >↪→

name is optional, phi1 = 0, phi2 = 2π use default values if not explicitly set.

2.17.9 Trap Construction

This shape implements two alternative constructors, which are automatically recognized
depending on the supplied attributes. The xml entity ’element’ must either look like the
following:

1 <some-tag name="my-tube" z="2*cm" theta="0" phi="0"
2 y1="1*cm" x1="1*cm" x2="2.cm" alpha1="0"
3 y2="2.cm" x3="2*cm" x4="2*cm" alpha2="pi"
4 ... further xml-attributes not looked at >
5 </some-tag>

The alternative constructor takes the following arguments:

1 <some-tag dx="1*cm" dy="2.cm" dz="2*cm" pLTX="..." ... further xml-attributes
not looked at >↪→

2 ... further optional xml-elements not looked at
3 </some-tag>

name is optional, rmin1 = 0, rmin2 = rmin1 have default values if not explicitly set. This
constructor is a reduces form for a subset of trap shapes. The relationship between the two
constructors is as follows:

1 z = 0.5*dz;
2 theta = 0;
3 phi = 0;
4 x1 = 0.5 * dx;
5 y1 = 0.5 * dy;
6 x2 = 0.5 * pLTX;
7 alpha1 = atan(0.5*(pLTX - dx)/dy);
8 x3 = 0.5 * dx;
9 y2 = 0.5 * dy;

10 x4 = 0.5 * pLTX;
11 alpha2 = alpha1;

67

2 Basics

2.17.10 Regular Trapzoid (TRD1) Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-trd1" x1="1*cm" x2="2*cm" y="1*cm" z="2*cm"
2 ... further xml-attributes not looked at >
3 ... further optional xml-elements not looked at
4 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier.

2.17.11 Irregular Trapzoid (TRD2) Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-trd2" x1="1*cm" x2="2*cm" y1="1*cm" y2="2*cm" z="2*cm"
2 ... further xml-attributes not looked at >
3 ... further optional xml-elements not looked at
4 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier.

2.17.12 Torus Shape Construction

This shape implements for historical reasons two alternative constructors, which are automati-
cally recognized depending on the supplied attributes. The xml entity ’element’ must look
like the following:

1 <some-tag name="my-torus" r="10*cm" rmin="1*cm" rmax="2.cm"
2 startphi="0*rad" deltaphi="2*pi" ... further

xml-attributes not looked at >↪→

3 ... further optional xml-elements not looked at
4 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier. rmin = 0, startphi = 0 and deltaphi = 2 ∗ π have default values and are optional.

The alternative constructor takes the following arguments:

1 <some-tag name="my-tube" r="10*cm" rmin="1*cm" rmax="2.cm"
2 phi1="0*rad" phi2="2*pi" ... further xml-attributes not

looked at >↪→

3 ... further optional xml-elements not looked at
4 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier. rmin = 0, phi1 = 0 and phi2 = 2 ∗ π have default values and are optional.

68

2.17 Shape and Volume Plugins

2.17.13 Sphere Shape Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-sphere" rmin="1*cm" rmax="10*cm" starttheta="0"
deltatheta="pi" startphi="0" deltaphi="2*pi"↪→

2 ... further xml-attributes not looked at >
3 ... further optional xml-elements not looked at
4 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier. rmin = 0, starttheta = 0 and deltatheta = π, startphi = 0 and deltaphi = 2 ∗ π
have default values and are optional.

2.17.14 Paraboloid Shape Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-paraboloid" rmin="1*cm" rmax="2*cm" dz="1*cm" ... further
xml-attributes not looked at >↪→

2 ... further optional xml-elements not looked at
3 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier. rmin = 0 has a default value and is optional.

2.17.15 Hyperboloid Shape Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-hyperboloid" rmin="1*cm" inner_stereo="50*degree"
rmax="2*cm"↪→

2 rmax="2*cm" outer_stereo="pi/2"
3 dz="5*cm" ... further xml-attributes not

looked at >↪→

4 ... further optional xml-elements not looked at
5 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier.

69

2 Basics

2.17.16 Regular Polyhedron Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-polyhedron" numsides="5" rmin="1*cm" rmax="2*cm" dz="5*cm"
2 dz="5*cm" ... further xml-attributes not looked

at >↪→

3 ... further optional xml-elements not looked at
4 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier.

2.17.17 Irregular Polyhedron Construction

The xml entity ’element’ must look like the following:

1 <some-tag name="my-polyhedron" numsides="5" startphi="0" deltaphi="2*pi" ...
further xml-attributes not looked at >↪→

2 <plane rmin="1*cm" rmax="2*cm" z="1*cm"/>
3 <plane rmin="2*cm" rmax="3*cm" z="2*cm"/>
4 <plane rmin="2*cm" rmax="4*cm" z="4*cm"/>
5 ... further optional xml-elements not looked at
6 </some-tag>
7 ... further optional xml-elements not looked at
8 </some-tag>

The name attribute is optional. If present the created Solid will be given the supplied
identifier. A minimum of 2 z-planes is required.

2.17.18 Eight-Point Solid Construction

To be written.

2.17.19 Tessellated Solid Construction

To be written.

2.17.20 Boolean Shape Construction

To be written.

70

2.18 Readout Segmentation

2.18 Readout Segmentation

Segmentation plugins are used to impose an artifical super-structure onto sensitive elements
such as a grid for pixel detectors etc. DD4hep supports several such segmentations, which are
internally created with the plugin mechansim, which also allows to easily extend the existing
pallete of segmentations.

71

Bibliography

[1] The DD4hep Project Repository. Oct. 2016. url: https://github.com/AIDASoft/DD4hep.
[2] R Antunes-Nobrega et al. LHCb reoptimized detector design and performance: Technical

Design Report. Technical Design Report LHCb. Geneva: CERN, 2003.
[3] Sébastien Ponce. Detector Description Framework in LHCb. Tech. rep. LHCb-PROC-

2003-004. CERN-LHCb-PROC-2003-004. Geneva: CERN, Mar. 2003.
[4] H. Aihara et al. “SiD Letter of Intent”. In: (2009). arXiv: 0911.0006 [physics.ins-det].
[5] Toshinori Abe et al. “The International Large Detector: Letter of Intent”. In: (2010).

doi: 10.2172/975166. arXiv: 1006.3396 [hep-ex].
[6] R. Brun, A. Gheata, and M. Gheata. “The ROOT geometry package”. In: Nucl. Instrum.

Meth. A502 (2003), pp. 676–680. doi: 10.1016/S0168-9002(03)00541-2.
[7] R. Brun and F. Rademakers. “ROOT: An object oriented data analysis framework”. In:

Nucl. Instrum. Meth. A389 (1997), pp. 81–86. doi: 10.1016/S0168-9002(97)00048-X.
[8] S. Agostinelli et al. “GEANT4: A Simulation toolkit”. In: Nucl. Instrum. Meth. A506

(2003), pp. 250–303. doi: 10.1016/S0168-9002(03)01368-8.
[9] F. Gaede, N. Graf, and T. Johnson. “LCGO - geometry description for ILC detectors”.

In: International Conference on Computing in High Energy and Nuclear Physics, Victoria
(Canada), 2 Sep 2007 - 7 Sep 2007. Sept. 2, 2007.

[10] R. Chytracek et al. “Geometry description markup language for physics simulation and
analysis applications.” In: IEEE Trans. Nucl. Sci. 53 (2006), p. 2892. doi: 10.1109/TNS.
2006.881062.

73

https://github.com/AIDASoft/DD4hep
https://arxiv.org/abs/0911.0006
https://doi.org/10.2172/975166
https://arxiv.org/abs/1006.3396
https://doi.org/10.1016/S0168-9002(03)00541-2
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/TNS.2006.881062
https://doi.org/10.1109/TNS.2006.881062

	Introduction and General Overview
	Project Scope and Requirements
	Toolkit Design
	The Compact Detector Description
	Detector Constructors

	Generic Detector Description Model
	Detector Element Tree versus the Geometry Hierarchy
	Extensions and Views

	Simulation Support
	Detector Alignment Support

	Basics
	Building DD4hep
	Supported Platforms
	Prerequisites
	CMake Build Options for DD4hep
	Build From Source
	Remarks
	Caveat

	DD4hep Handles
	The Data Extension Mechanism
	XML Tools and Interfaces
	The Detector Description Data Hub: Detector
	Detector Description Persistency in XML
	Units
	Input data with units
	Output data with units
	Units in namespaces

	Material Description
	Shapes
	Shape factories

	Volumes and Placements
	Detector Elements
	Sensitive Detectors
	Description of the Readout Structure
	CellID Descriptors
	Segmentations
	Volume Manager
	Static Electric and Magnetic Fields

	Detector Constructors
	Tools and Utilities
	Geometry Visualization
	Geometry Conversion
	Overlap checking
	Geometry checking
	Directional Material Scans
	Plugin Test Program

	Standard Plugins
	Geometry Display
	Execute a Function in a Library
	Start the ROOT Interpreter
	Start the DD4hep UI
	Dump GDML Tables of the TGeoManager
	Dump Optical Surfaces of the TGeoManager
	Dump Skin Surfaces of the TGeoManager
	Dump Border Surfaces of the TGeoManager
	Dump the Element/Material Table of the TGeoManager
	Load and Interprete XML file
	Load and Interprete XML Element
	Load and Initialize the DD4hep Volume Manager
	Dump Detector Description to ROOT file
	Load Detector Description from ROOT file
	Dump Geometry to ROOT file
	Dump DetElement/Volume Tree
	Fill DetElement Cache

	Shape and Volume Plugins
	Assembly Shape Construction
	Scaled Shape Construction
	Box Shape Construction
	Half-Space Construction
	Cone Construction
	Polycone Construction
	Cone Segment Construction
	Tube Construction
	Trap Construction
	Regular Trapzoid (TRD1) Construction
	Irregular Trapzoid (TRD2) Construction
	Torus Shape Construction
	Sphere Shape Construction
	Paraboloid Shape Construction
	Hyperboloid Shape Construction
	Regular Polyhedron Construction
	Irregular Polyhedron Construction
	Eight-Point Solid Construction
	Tessellated Solid Construction
	Boolean Shape Construction

	Readout Segmentation

	References

