
 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 1

DD4hep
 Status

HEP detector description
supporting the full

experiment life cycle

March 27th., 2014

M.Frank, F.Gaede, M.Petric, A.Sailer

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 2

● Motivation and Goals

=> Introduction / Reminders

● Simulation

● Conditions support

● Alignments support

● Miscellaneous

● Summary

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 3

Motivation and Goal

● Develop a detector description

– For the full experiment life cycle
● detector concept development, optimization
● detector construction and operation
● “Anticipate the unforeseen”

– Consistent description, with single source,
which supports

● simulation, reconstruction, analysis

– Full description, including
● Geometry, readout, alignment, calibration etc.

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 4

What is Detector Description ?

● Description of a
tree-like hierarchy of
“detector elements”

– Subdetectors or
parts of subdetectors

● Detector Element describes

– Geometry

– Environmental conditons

– Properties required
to process event data

– Optionally:
experiment, sub-detector or
activity specific data

ILD

VXD

Sector1

Ecal

…

Ladder

…

Module

EndB

TPC EndA

…

Hcal

…

Readout
Visualization

Alignment
Conditions

Geometry

Subdet. data

Reconstr. data
…

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN

DD4Hep - The Big Picture

Extensions
where
required

Detector
constructors

python

Compact
description

 xml

Generic Detector
Description Model

Based on ROOT TGeo
 c++

Detector
constructors

c++

Geometry
Display

TGeo
G4 converters

Reconstruction
Extensions

Analysis
Extensions

Reconstruction
Program

Analysis
Program

Geant4
Program

GDML
Converter

xml

Alignment /
Calibration

Conditions DB

Note:
DD4hep population is plugin based
=> Only one, not the exclusive way.

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 6

DDRec

Saga in 5 Episodes: Sub-packages

● DD4hep – basics/core (1)

● DDG4 – Simulation using Geant4 (1)

● DDRec – Reconstruction supp.(2)

● DDAlign – Alignment support (3)

● DDCond – Detector conditions (3)

 (1) Bug-fixes and maintenance

 (2) See presentation of F. Gaede (WP3, Task 3.6)

 (3) Work since start of AIDA2020

DDCond

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 7

● Motivation and Goals

● Review of mature components

=> DD4hep & DDG4

● Conditions support

● Alignment Support

● Miscellaneous

● Summary

● Motivation and Goals

=> Introduction / Reminders

● Simulation

● Conditions support

● Alignments support

● Miscellaneous

● Summary

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 8

DD4hep Core: Multiple Segmentations
Multiple Hit Collections

● Extension component using existing interfaces

● From the wish-list of FCC

● Collection selection according to
'key' and 'key value' or 'key range'

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 9

Simulation: DDG4

● Simulation = Geometry + Detector response + Physics

● Mature status

– Eventual bug fixes, smaller improvements

● Improvements

– Support for multiple primary vertices
from a single input source

– Multiple input sources were already supported

● Full framework used by the Linear Collider community

● Individual components used by the FCC community

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 10

DDG4: Optimization

● Nice example how a couple of stupid
container look-ups can screw your day

● Now DDG4 framework overhead < 10 % including:
Input, hit handling in sensitive detectors,
MC truth handling, output

BEFORE AFTER

vtunes output from 20 events e+ e−
→ t t

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 11

● Motivation and Goals

● Simulation

● Conditions support

 => DDCond

● Alignment Support

● Miscellaneous

● Summary

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 12

DDCond: Conditions Data

● Time dependent data necessary to process the
detector response [of particle collisions]

● Conditions data support means to
Provide access to a consistent set of values
according to a given time

– Fuzzy definition of a “consistent set”
typically referred to as “interval of validity”:
time interval, run number, named period, ...

– Configurable and extensible

● Data typically stored in a database

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 13

Conditions Data: Consistent Dataset

[Pere Mato / 2000]

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 14

DDCond: What do we want ?

● We want to provide access to consistent set of
accompanying data for processing event data

– See previous slide

● We want to be “fastest”

– Need reasonable users

● We want to support multi-threading at it’s best

– Not wait for flushed event pipelines before updates
Fully transparent processing, minimal barriers

– If we can do this, we can also expect some support from
the experiment framework

● Reasonable use of resources

– Cache where necessary but no more

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 15

DDCond: What can we assume ?
(when used by reasonable users)

● Conditions data are slowly changing

– e.g. every run O(1h), lumi section O(10min), etc.

● Conditions data change in batches

– Interval of validity is same for a group (subdetectors)

– Not every SD defines it himself (I know, needs discipline)

● Conditions also are the result of computation(s)

– Conditions data may also be the combination of other
conditions data applied to a functional object
Example: Alignment transformations from Delta-values

– So-called “derived conditions” are mandatory

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 16

Yesterday and Today
Change of Paradigm

● Historically

– C++ data processing frameworks were a novelty

– Emphasis on flexibility, “discovery” of the data space

– Only load what users ask for (Load-on-demand)

– Multi-threading was no issue

● Today [no free lunch in life]

– Load barriers and accessed conditions set is well specified
[See for example ongoing discussions around Gaudi]

– No late loading, no load on demand: minimize mutex-hell

– Maybe a bit of overhead, but you gain by multi-threading

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 17

DDCond: The Data Cache

Hence may be replaced with
alternative implementation

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 18

DDCond: User Data Access

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 19

DDCond: Flexibility where necessary

Plugin based concrete
implementations:
● Experiment with different implementations
● Choose best implementation for the

concrete use-case

ConditionsPool

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 20

DDCond: Framework Mode

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 21

DDCond: Derived Conditions

● Data derived from conditions data are also conditions

– Example: refractive index derived from atm. Pressure

– Example: alignment transformations derived from Δs

– Source may be one or multiple conditions

– IOV is intersection of source IOVs

● Derived conditions depend on

– Source condition(s)

– Callback functor to perform the data transformation

● Derived condition dependencies must be registered
to the projection slice

– Computation is part of the “slice preparation”

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 22

Project Conditions Slice: Code Example

 /// Initialize the conditions manager and set plugins (here: defaults)
 ConditionsManager condMgr = ConditionsManager::from(lcdd);
 condMgr["PoolType"] = "DD4hep_ConditionsLinearPool";
 condMgr["UserPoolType"] = "DD4hep_ConditionsMapUserPool";
 condMgr["UpdatePoolType"] = "DD4hep_ConditionsLinearUpdatePool";
 condMgr.initialize();

 /// Register IOV type used to define IOV structures
 const IOVType* iov_type_run = condMgr.registerIOVType(0,"run").second;

 /// Create the conditions slice
 ConditionsSlice* slice = new ConditionsSlice(condMgr);

 /// Define slice content (see next slide)

 /// Now compute the conditions according to one IOV
 IOV req_iov(iov_type_run,<specific value>);
 /// Attach the proper set of conditions to the user pool
 ConditionsManager::Result r = condMgr.prepare(req_iov,*slice);

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 23

Define Conditions Slice Content

 /// Use the created conditions slice
 ConditionsSlice* slice = ...

 /// Register required DATA condition using key:
 ConditionKey key("Some­global­identifier");
 slice­>insert(key,LoadInfo("Persistent­location­where­to­find­data"));

 /// Register derived condition recipe:
 /// – Depends on data from condition identified by "key": May be many!
 /// – Uses "MYConditionUpdateCall" for the data transformation
 ConditionsUpdateCall* call = new MYConditionUpdateCall();
 ConditionKey target_key("Some­other­global­identifier");
 DependencyBuilder builder(target_key, call);
 builder.add(key); /// Derived condition depends on "key"
 slice­>insert(builder.release());

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 24

Conditions Access from the DetElement

● So far we defined the mechanism to manage conditions

● But we also need a friendly user interface for clients

– This is all DD4hep is about

– Hide details in the framework, expose simplicity to users

– Framework may also mean “experiment framework”
Expect a bit of support as long as real users are not affected

● Conditions are accessed by key from the
detector elements in the hierarchy

– Keys are encrypted from a user defined path (e.g. address)

– Or an alias name such as “Alignment”, “Pressure” etc.

● Let’s move on to the code examples

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 25

Conditions Data: Dynamic Binding

● Any data may be bound to a condition object

– If size < 64 bytes data aggregated in condition object

– Otherwise from heap

– May use boost::spirit grammar definitions

● Data access for both cases:
 /// Creator case: Create conditions object and bind the conditions data
 Condition cond(name,type);
 double& pressure = cond.bind<double>();
 pressure = 981 * hPa;

 /// Client case: access the conditions data using a projected slice
 ConditionsSlice* slice = ...
 ConditionsKey key(name);
 Condition cond = slice­>pool­>get(key);
 double& pressure = cond.get<double>();

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 26

Conditions Access: Code Example

 // We need access to a projected slice
 ConditionsSlice* slice = ...
 DetElement detElement = ...

 if (detElement.hasConditions()) {
 // Use specialized DetElement view (facade) to access conditions
 DetConditions dc(detElement);
 ConditionKey pressure("/world/TPC/EndA/Sector1#pressure");
 // Could also map "Pressure" to "/world/TPC/EndA/Sector1#pressure"
 // as alias to local DetElement namespace!

 // Access the condition by key from the container
 Conditions::Container container = dc.conditions();
 Condition cond = container.get(pressure.hash,*slice­>pool);

 // Access conditions data using dynamic type binding
 const vector<int>& table = cond.get<vector<int> >();
 ...
 }

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 27

Pros and Cons

● Multiple slices: No global barriers on “change-run”

++ multi-threading, ++ advanced slice preparation

● IOV-pools read-only after load + compute

++ no locking hell for event processors, only for the loader

● No dependencies between IOV types (derived conditions)

++speed, ++simplicity --flexibility (use cases ?)

● Many parallel IOV types are difficult to handle

User problem: should limit yourself to 1,2 or 3

● IOV pools must be reasonably populated

-- 1 condition per pool would be bad. Many is efficient...
 (→ need reasonable users)

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 28

Benchmarks and Timing (1)

● CLICSiD example: ~ factor 5 beyond LHCb

– Standard CERN desktop 2 years old, Ubuntu 16.04 32 bit

● Looks quite scalable and quite fast

– No database access nor XML parsing,
but this was not part of this exercise

● Create 175 k conditions + registration to IOV type ~ 0.22 s

● Create and select slice for
175 conditions + 105 k computations

~ 0.3 s

● Subsequent select 280 k
equivalent to run-change with already loaded conditions

~ 0.13 s

● Slices for (175+105) for 20 runs (total of 5.8 Mcond)
- Create conditions (175 k)
- Computations (105 k)
[approaching machine memory limit]

~ 0.22 s/run
~ 0.35 s/run

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 29

Benchmarks and Timing (2)

● LHCb example

– Standard CERN desktop 2 years old, Ubuntu 16.04 32 bit
Statistics over 20 runs

● Subsequent accesses nearly for free, since caches are active

● Influence of disk cache of XML files on timing ?

● Load slice with 9353 multi-conditions from XML snapshot
+ registration to IOV type
[Mostly XML parsing]

~ 1.09 s

● Compute 2493 alignments from conditions ~ 0.015 s

● Fill slice from cache ~ 0.08 s

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 30

DDCond: Status

● Described functionality is implemented

– Tested with xml-input

– Interfaced to LHCb conditions database
for performance tests

● Prerequisite for the development of
the handling of (mis-)alignments

● Documentation to be written

● No persistency implementation envisaged
besides simple xml

– Flux in the LHC community: COOL to be retired

– If required adapt to coming database plugins(1)

(1) See also presentation from H.Grasland (AIDA2020, WP3, Task 3.4)

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 31

● Motivation and Goals

● Simulation

● Conditions support

● Alignment Support

 => DDAlign

● Miscellaneous

● Summary

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 32

DDAlign: Detector Alignment

● Fundamental functionality to interpret event data

– Model mis-placement
by construction

● Non-ideal mounts of
detector components

– Must handle imperfections
● Geometry => (Mis)Alignment

– Anomalous conditions
● Pressures, temperatures
● Contractions, expansions

T

R

T*R

T*P*R*P-1

 TPC
Simplified

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 33

DDAlign: Standard Disclaimer

DDAlign does not provide algorithms(1) to determine
alignment constants and never will.
DDAlign supports hosting the results of such
algorithms and applies the resulting imperfections

(1) Algorithms are provided by WP3, Task 3.3 (C. Parkes et al.)
DD4hep (WP3, Task 3.2) collaborates with Task 3.3, but does not intend to interfere.
Milestone: MS 40 (31/01/2017)
Report: http://cds.cern.ch/record/2243542/files/AIDA-2020-MS40.pdf

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 34

DDAlign: Global and Local Alignments

● Global alignment corrections

– Physically alters geometry

– Intrinsic support by ROOT

– By construction not multi-threaded

– Possibility to simulate misaligned geometries

● Local alignment corrections

– Geometry stays intact (either ideal or globally aligned)

– Multi-threading supported, multiple versions

– Local alignment corrections are conditions

– Provide matrices from ideal geometry to world
e.g. to adjust hit positions

● Support both, emphasis on local alignment

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 35

DDAlign: Global Alignments

● Interface implemented using TGeo:
class TGeoPhysicalNode

● DD4hep interface needs revisiting

– Implementation looks OK

– Interface to load Δ – parameters from xml
needs some adjustments

● Usage for iterative alignment purposes questionable

– It was never foreseen in TGeo to reset an existing
alignment and load new Δ – parameters(1)

● Was put on hold to support multi-threading

– Requires “Local Alignments”

 (1) private communication, A. Gheata, co-author of the ROOT Geometry Toolkit

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 36

Local Alignments and Conditions

● Local alignments data are conditions

– Valid only for a certain time interval (IOV)
● Management is identical

– Managed in pools

– Access by slices
● Alignment transformations are derived conditions

– Condition: Δ – parameters (corrections)

– Derived: transformation matrices
(to world or to hosting DetElement)

T

R

T*R

T*P*R*P-1

 TPC
Simplified

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 37

DDAlign: Alignment Corrections
 (Δ - Parameters)

● Transformation matrix
between two volumes
is

– Rotation

– Or a rotation around
pivot point

– Followed by a
translation

– Combination

● Use hints for faster
computation (flags)

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 38

DDAlign: Apply Δ - Parameters

ILD Sector1TPC EndA

● Trickle-up the hierarchy and compute the matrices
the most effective way

● Re-use intermediate results

Tr EndA
World

= TrTPC
World

× (Tr EndA
Parent (TPC)

+ΔEndA)

TrSec 1
World

= Tr EndA
World

× (Tr Sec1
Parent (EndA)

+ΔSec 1)

TrTPC
World

= Tr ILD
World

× (TrTPC
Parent (ILD)

+ΔTPC)

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 39

Alignment handling: Code example
(see examples/AlignDet/src/*.cpp for the detailed usage of this code-fragments)

 lcdd.fromXML(input); // First we load the geometry

 ConditionsManager condMgr = ConditionsManager::from(lcdd);
 AlignmentsManager alignMgr = AlignmentsManager::from(lcdd);

 // Load delta parameters: Use here simple plugin
 char* deltas[] = {"Delta­Params.xml"};
 lcdd.apply("DD4hep_ConditionsXMLRepositoryParser",1,deltas);

 // Project required conditions into conditions slice
 IOV iov(iov_type_run,1500); // Project conditions for run 1500
 ConditionsSlice* slice = createSlice(condMgr, *iov_typ);
 ConditionsManager::Result cres = condMgr.prepare(iov, *slice);

 // Register callbacks to transform Delta to matrices
 ...

 // Compute the tranformation matrices
 AlignmentsManager::Result ares = alignMgr.compute(*slice);

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 40

Support for Alignment Calibrations

● Common activity with WP3 Task 3.3 (C.Burr et al.)

● Development of facade object to simplify

– the access,

– the modification and

– the management of alignment corrections
for calibration processes

● Functionality

– Bulk buffering and application of Δ-parameters
followed by re-computation of the transformation matrices

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 41

Alignment Calibrations: Code Example
(see examples/AlignDet/src/AlignmentExample_align_telescope.cpp for details)

 /// Use the created (and projected) conditions slice
 ConditionsSlice* slice = ...
 /// Create calibration object.
 AlignmentsCalib calib(lcdd,*slice);
 /// Update call may be specialized. Hence, no default
 calib.derivationCall = new DDAlignUpdateCall();
 /// Attach to DetElement placements to be re­aligned
 Alignment::key_type key_tel = calib.use("/world/Telescope");
 Alignment::key_type key_m1 = calib.use("/world/Telescope/module_1");
 calib.start(); // Necessary to enable dependency computations!

 /// Let's “change” (re­align) some placements:
 Delta delta(Position(333.0,0,0));
 calib.setDelta(key_tel,Delta(Position(55.0,0,0)));
 calib.setDelta(key_m1,Delta(Position(333.0,0,0),Rotation(pi/2,0,0));

 /// Push delta­parameters to the conditions objects
 calib.commit(AlignmentsCalib::DIRECT);

 /// Now all alignment conditions have the updated delta parameters.
 /// All marices of the derived conditions are updated!

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 42

Alignment: Results
● DD4hep and alignment tools now used by Bach

● Please see presentation of C. Burr et al.

● MS40 (report)

http://cds.cern.ch/record/2243542/files/AIDA-2020-MS40.pdf

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 43

DDAlign: Status

● Implemented Global and Local (mis-)alignment

– xml parser for Global (mis-)alignment
constants needs re-visiting

● Started to integrate Local misalignments with
the alignment procedures developed within
WP3, Task 3.3

– MS40: Running prototype for alignment Toolkit

– To be tested in “real world” during
test-beam at Desy (S. Borghi, C. Burr, C. Parkes)

● Documentation to be written

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 44

● Motivation and Goals

● Simulation

● Conditions support

● Alignment Support

● Miscellaneous

● Summary

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 45

Miscellaneous

● Main weak point is documentation

– Need to revisit DDAlign design document

– DDCond and DDAlign user manuals

● Need to build a test suite

– Mainly for global alignment procedures

– For local alignment procedures this should come
for ‘free’ from Task 3.3

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 46

Toolkit Users

Good news: We start to see contributions from
users outside base community (ILC, CLICdp)

– FCC, SiD

● ILC F. Gaede et al.
● CLICdp A. Sailer et al.
● SiD W. Armstrong
● FCC-eh P. Kostka et al.
● FCC-hh A. Salzburger et al.
● CALICE Calorimeter R&D, 280 persons: Started
● FCC-ee Some interest

DD4hep DDG4

X X

X X

X ?

X X

X

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 47

● Motivation and Goals

● Simulation

● Conditions support

● Alignment Support

● Miscellaneous

● Summary

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 48

Summary

● The DD4hep core and DDG4 simulation extension
were consolidated and are to a large degree on
maintenance level

– Deployed by various customers

● Support for conditions handling is implemented

● Support for alignment handling is being used by
collaborators from WP3

● Documentation for DDCond and DDAlign
is weak and must be improved

● We are approaching the “polishing phase”

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 49

Questions and Answers

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 50

Backup

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 51

Implementation: Geometry

Subdetector status
(conditions)

Subdetector
Hierarchy (Tree)

Detectors

DetectorElement

Envelope
[TGeoShape]

LogicalVolume

 0…n

 volume: 1

visattr: 0…1

0…1

Material

[TGeoMatrix]

transform: 1

detector: 1

Geometry

children 1..n

PlacedVolume
[TGeoNode]

placements: 0…1

Readout

Visualization

Alignment

Conditions

[TGeoBox] [TGeoCone] [TGeoTube]….

GDML
content

Segmentation

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 52

Views & Extensions:
Users Customize Functionality

DD4hep is based on handles to data

– Clients only use the handles

– Possibility of many views based on the same DE data
● Associate different behavior

to the same data
● Views consistent

by construction
● User data according to needs

– Be prudent: blessing or curse
● User data: common knowledge
● No one fits it all solution
● Freedom is also to not do

everything what somehow looks possible

DE Alignment
Geometry

User data
…

Recon

stru
ctio

n Calibration

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 53

Example of a DDG4 Action Sequence:
Event Overlay with Features

Signal

Back-
ground

In
it

C
o

ll
.

1
C

o
ll

.2
M

e
rg

e
&

C
re

at
e

G
4P

r i
m

.

Start Detector
Simulation

● Combine simple
and reusable
modules

● Input module
● Any data format

● Primary vertex
smearing

● Primary vertex
boost

● Common:
initialization,
final merge

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 54

Multiple Input Sources

Generic Detector
Description Model

Based on ROOT TGeo
 c++

CAD
converter c++

CAD
drawing

Detector
constructors

python

Compact
description

 xml

Detector
constructors

c++

DDDB
converter c++

Conditions
DB

….

 April 6th., 2017 AIDA2020 Annual Meeting 2017, Paris Markus Frank / CERN 55

LHCb Detector

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

