DD4hep Status

HEP detector description supporting the full experiment life cycle
• Motivation and Goals

=> Introduction / Reminders

• Concepts and Design

• Going to the 'real world'

• Summary
Motivation and Goal

- **Develop a detector description**
 - For the full experiment life cycle
 - detector concept development, optimization
 - detector construction and operation
 - “Anticipate the unforeseen”
 - Consistent description, with single source, which supports
 - simulation, reconstruction, analysis
 - Full description, including
 - Geometry, readout, alignment, calibration etc.
What is Detector Description?

- Description of a tree-like hierarchy of “detector elements”
 - Subdetectors or parts of subdetectors
- Detector Element describes
 - Geometry
 - Environmental conditions
 - Properties required to process event data
 - Optionally: experiment, sub-detector or activity specific data
• Motivation and Goals

• Concepts and Design

=> Reminder

• Going to the 'real world'

• Summary
DD4Hep - The Big Picture

Compact description xml

Detector constructors python c++

Geometry Display

Generic Detector Description Model Based on ROOT TGeo c++

Conditions DB

Alignment / Calibration

Extensions where required

GDML Converter xml

TGeo => G4 converters

Reconstruction Extensions

Analysis Extensions

SLIC [SiD Simulation]

Geant4 Program

Reconstruction Program

Analysis Program
- Motivation and Goals
- Concepts and Design
- Status of Ongoing Work
 - Simulation
 - Reconstruction
- Future work – next steps
- Summary
Simulation: Generic Geant 4 Gateway
(Markus Frank)

- **Simulation** = Geometry + Detector response + Physics
- **Attempt for formalization of Geant4**
 - Ideally: configuration without user code
 - Extensive usage of plugins
- **DDG4**
 - Bootstrap Geant4 from DD4hep in memory geometry
 - Configure using XML, python or Cint (ROOT 5)
 - Configure Geant4 actions, physics-list, processes, particle constructors, sensitive actions, I/O etc using module palette
Simulation: DDG4

(Markus Frank)

- **Concept**
 - Walk through the geometry starting from “world”
 - Convert the geometry from ROOT to Geant4
 - Instantiate sensitive detectors from palette [similar to palette of detector constructors]
 - Instantiate physics list, -constructors and -processes
 - Start simulating

- **Processing chain is implemented**
 - Validation in progress – time consuming process

- **Palette of sensitive detectors**
 - Is limited to some existing examples
 - Hope: palette gets populated by 'donations' of clients
Geant 4 Gateway using slic (1)
(Norman Graf, Jeremy McCormick)

- CERN/LCD follow suggestion to benefit from the 'slic' simulation framework (SiD)
 - Convert DD4hep geometry to LCDD notation (xml)
 - GDML: materials, solids, limit sets, regions logical-, placed volumes / physical volumes
 - Fields
 - Sensitive detector information

- Collaboration with SiD/SLAC (N.Graf, J.McCormick)
 - Introduce new segmentations, identification of deficiencies

- F.G. successfully simulated ILD example det.
Detector Segmentations
(Christian Grefe)

- Are the description of the sensitive detector regions
- Define encoding of the location of energy depositions (hits) in a simulation program
 - Encoding depends on the sensitive area(s) and detector technology
 Si Tracker: Side / Layer / Wafer / x-y local coordinates
 - Bi-directional
 volume ID in hit $<==>$ full resolution of
 - detector/component
 - local coordinate
 - But there are also less obvious segmentations mostly projective segmentations (e.g. calo towers)
Detector Segmentations

(Christian Grefe)

- Essential components to implement
 - Simulation programs
 - Digitization / Reconstruction applications
 - Bridge between the two worlds

- Shared, independent package
Reconstruction Interfaces
(Christian Grefe, Astrid Munich)

• Set of utilities to easy for users the retrieval of specialized geometrical questions
 – Work connected to segmentations
 – Transparently chain reoccurring call sequences
 – Precompute and cache information difficult or expensive to obtain but regularly needed
 [Implemented using extension mechanism]

• Astrid mimicked the GEAR-TPC model as in Marlin
 – Work done ~ year ago
 – Need to restart support for tracking detectors

• Christian was working on CALO interfaces
 – Layered detectors consisting of segmented active modules
Documentation

- http://aidasoft.web.cern.ch/DD4hep
- https://svnsrv.desy.de/basic/aidasoft/DD4hep/trunk
- In the svn doc area
 - DD4hepManual.pdf
 core API: 37 pages
 - DDG4Manual.pdf
 simulation: 25 pages
 - First issues
- Doxygen documentation
- Motivation and Goals
- Concepts and Design
- Implementation
- **Future work – next steps**
- Summary
Alignment and Detector Conditions

(Markus Frank)

- Less an issue during the experiment design phase
 - Less important for the communities designing detectors
 - Selling argument for existing (e.g. LHC) experiments
- Important topic to interpret event data from existing ('real') detectors
 - Necessity to deal with imperfections
 - Geometry => (Mis)Alignment
 - Anomalous conditions
 - Pressures, temperatures
 => Gains, refractive indices
 => Contractions, expansions
Other Upcoming Work [2014]

- Validate the two simulation paths
 - Verify the translation mechanisms
 - Help new clients to use the infrastructure
- Extend, validate and support work on reconstruction interfaces
 - Currently concrete only for calorimetry
 - Tracking support starting (=> see talk of F.Gaede)
- Must come to gears with Mokka replacement
 - ILD simulation program: support will disappear
 - Test of concept done. Bulk driver translations missing
 - Item was on the list already last year
- Support for new clients
DD4hep Clients

- Linear Collider Detector community (ILD+SiD)
 - Work group established several months ago
 - M.Frank\(^{(1)}\), F.Gaede\(^{(2)}\), C.Graefe\(^{(1)}\), N.Graf\(^{(3)}\), J. McCormick\(^{(3)}\), N.Nikiforou\(^{(1)}\), C.Rosemann\(^{(2)}\), A.Sailer\(^{(1)}\)

- Clients evaluating DD4hep
 - LheC contact: P. Kotzka\(^{(2)}\)
 - FHC contact: C. Helsens\(^{(1)}\)
 - LHCb contact: M. Clemencic\(^{(1)}\)

\(^{(1)}\) CERN \(^{(2)}\) Desy \(^{(3)}\) SLAC
Summary

- The DD4hep core was consolidated
- On the track for simulation framework
 - 2 paths for ILD, generic framework else
- Support and developments event data processing beyond simulation ongoing
- We see interest from the HEP community
 - Clients want to leverage development effort to common infrastructure projects (LheC, FHC, LHCb)
Questions and Answers
Backup slides
Implementation: Geometry

Subdetector Hierarchy (Tree)

- Detectors
 - DetectorElement
 - PlacedVolume
 - [TGeoNode]
 - [TGeoMatrix]
 - [TGeoBox] [TGeoCone] [TGeoTube]

Subdetector status (conditions)

- Alignment
- Conditions
- Readout
- Visualization
- Segmentation

GDML content

Geometry
DDG4 Configuration Example (Incomplete)

```xml
<sequences>
  <sequence name="Geant4EventActionSequence/EventAction">
    <properties Control="true"/>
    <action name="Geant4Output2ROOT/RootOutput"/>
    <properties Control="true" Output="simple.root"/>
  </action>
</sequence>

<sequence name="Geant4GeneratorActionSequence/GeneratorAction">
  <action name="Geant4ParticleGun/Gun">
    <properties .... />
  </action>
</sequence>

<sequence sd="SiVertexBarrel" type="Geant4SensDetActionSequence">
  <properties Control="true"/>
  <filter name="GeantinoRejector"/>
  <filter name="EnergyDepositMinimumCut"/>
  <action name="Geant4SimpleTrackerAction/SiVertexBarrelHandler">
    <properties Control="true"/>
  </action>
</sequence>

....
</sequences>
```

Geant4 event action setup

Geant4 generator action setup

Sensitive detector setup

Instance type from palette

Instance name for reference
Client Extensions

- Provide flexible functionality to solve reconstruction and analysis problems
- Approach to deal with the “unforeseeable”
- Motivated by the fact that Different use cases require different functionality
 - Example: Optimization of coordinate transformations
 local TPC hit to experiment coordinates
 => specialized data required
 (cache of precomputed results)
 - Need to extend the detector element's data
Non Transparent Design Decisions

- Things which look of small importance => but have significant impact on users
- Units: TGeo: GeV/cm/sec [CKM] Geant4: MeV/mm/ns
 - Consequently apply units
 TGeoBBox(10*tgeo::mm, 10*tgeo::mm, 10*tgeo::mm)
 G4Box(10*CLHEP::mm, 10*CLHEP::mm, 10*CLHEP::mm)
 - To get raw number always divide (both TGeo, Geant4): g4Box->GetXHalfLength() / CLHEP::mm
- Transformations
 - CLHEP is a dead end (support ?)
 - Use ROOT::Math vectors & matrices to build geometries very similar (but not identical!)
 started from same code bases, then deviated
 - Used by most LHC experiments
Porting Mokka Drivers
(Frank Gaede, Andre Sailer, Shaojun Lu)

- **Aim is to investigate the translation of Mokka drivers 'with minimal effort'** (Model: ILD_o1_v05)
 - Create compact xml file from Mokka database
 - Serves as input to DD4hep driver
 - Translate G4 in driver calls to DD4hep calls
 - G4Shape, G4LogicalVolume, ... => Shape, Volume, ...
 - Created 'detector constructor' (~driver)
 - Leave as much unchanged as possible
 - **Experience: VXD, SIT, TPC, SET, beamcal and HCAL barrel**
 - Tracker driver simple, calorimeters much more complicated
 - Parameters change in Mokka at run-time,...
 - Automation without brain is difficult, and will be hard to maintain
 - Will need some policy how to avoid parameter anarchy
Porting existing Mokka Drivers